TY - GEN
T1 - Dynamic perfusion assessment by contrast-enhanced ultrasound in blood-brain barrier disruption
AU - Lin, Wun Hao
AU - Fan, Ching Hsiang
AU - Ting, Chien Yu
AU - Liu, Hao Li
AU - Yeh, Chih Kuang
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - Recently, blood-brain barrier disruption (BBBD) has been performed by focused ultrasound (FUS) combining with microbubbles (MBs). The outcome of BBBD enhances local drug or gene delivery for improving the treatment efficiency of brain diseases. However, over-excitation of FUS may cause brain damage such as shutdown blood flow, intracerebral hemorrhage and brain edema. Therefore, it is essential to develop a an imaging system to assess dynamic perfusion changes during FUS-induced BBBD process. Here, we used the high-frequency destruction/reperfusion contrast-enhanced imaging technique to observe the cerebral perfusion under the cases of with/without hemorrhage in BBBD procedure. The BBB was disrupted by a 2.25 MHz FUS combining with MBs at 0.5-0.7 MPa (pulse repetition frequency: 1 Hz, pulse length: 1 ms, sonication time: 60 s). The results showed that the velocity of blood flow decreased after BBBD induced by FUS sonication. Particularly, the plateau of time-intensity curve was higher than prior to MBs destruction at 20 s after sonication and the blood flow would be obstructed due to the blood coagulates at 60s after sonication. The pattern of hemorrhagic damage caused by FUS can be monitored by the TIC. In addition, the location of blood flow velocity decrease was consistent with the areas of BBBD and the variation of blood flow depends on the applied acoustic pressure. In conclusion, the blood flow velocity changes have potential as an in vivo tool for quantifying the extent of the FUS-induced BBBD and detecting intracerebral hemorrhage occurrence.
AB - Recently, blood-brain barrier disruption (BBBD) has been performed by focused ultrasound (FUS) combining with microbubbles (MBs). The outcome of BBBD enhances local drug or gene delivery for improving the treatment efficiency of brain diseases. However, over-excitation of FUS may cause brain damage such as shutdown blood flow, intracerebral hemorrhage and brain edema. Therefore, it is essential to develop a an imaging system to assess dynamic perfusion changes during FUS-induced BBBD process. Here, we used the high-frequency destruction/reperfusion contrast-enhanced imaging technique to observe the cerebral perfusion under the cases of with/without hemorrhage in BBBD procedure. The BBB was disrupted by a 2.25 MHz FUS combining with MBs at 0.5-0.7 MPa (pulse repetition frequency: 1 Hz, pulse length: 1 ms, sonication time: 60 s). The results showed that the velocity of blood flow decreased after BBBD induced by FUS sonication. Particularly, the plateau of time-intensity curve was higher than prior to MBs destruction at 20 s after sonication and the blood flow would be obstructed due to the blood coagulates at 60s after sonication. The pattern of hemorrhagic damage caused by FUS can be monitored by the TIC. In addition, the location of blood flow velocity decrease was consistent with the areas of BBBD and the variation of blood flow depends on the applied acoustic pressure. In conclusion, the blood flow velocity changes have potential as an in vivo tool for quantifying the extent of the FUS-induced BBBD and detecting intracerebral hemorrhage occurrence.
UR - http://www.scopus.com/inward/record.url?scp=84886506245&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886506245&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2013.6609710
DO - 10.1109/EMBC.2013.6609710
M3 - Conference contribution
C2 - 24109897
AN - SCOPUS:84886506245
SN - 9781457702167
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 1152
EP - 1155
BT - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
T2 - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Y2 - 3 July 2013 through 7 July 2013
ER -