Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies

Xuan Ru Ji, Kuan Chung Cheng, Yu Ru Chen, Tzu Yu Lin, Chun Hei Antonio Cheung, Chia Lin Wu, Hsueh Cheng Chiang

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

The endosomal-lysosomal system (ELS), autophagy, and ubiquitin-proteasome system (UPS) are cellular degradation pathways that each play a critical role in the removal ofmisfolded proteins and the prevention of the accumulation of abnormal proteins. Recent studies on Alzheimer's disease (AD) pathogenesis have suggested that accumulation of aggregated β-amyloid (Ab) peptides in the AD brain results from a dysfunction in these cellular clearance systems. However, the specific roles of these pathways in the removal of Ab peptides and the pathogenesis underlying AD are unclear. Our in vitro and in vivo genetic approaches revealed that ELS mainly removed monomeric β-amyloid42 (Aβ42), while autophagy and UPS clear oligomeric Aβ42. Although overproduction of phosphatidylinositol 4-phosphate-5 increased Aβ42 clearance, it reduced the life span of Aβ42 transgenic flies. Our behavioral studies further demonstrated impaired autophagy and UPS-enhanced Aβ42- induced learning and memory deficits, but there was no effect on Aβ42-induced reduction in life span. Results from genetic fluorescence imaging showed that these pathways were damaged in the following order: UPS, autophagy, and finally ELS. The results of our study demonstrate that different degradation pathways play distinct roles inthe removal ofAβ42 aggregates andindisease progression.These findings alsosuggest thatpharmacologic treatments that are designed to stimulate cellular degradation pathways in patients with AD should be used with caution.

Original languageEnglish
Pages (from-to)1375-1387
Number of pages13
JournalFASEB Journal
Volume32
Issue number3
DOIs
Publication statusPublished - 2018 Mar

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies'. Together they form a unique fingerprint.

Cite this