TY - GEN
T1 - Edge-Guided Video Super-Resolution Network
AU - Tseng, Haohsuan
AU - Kuo, Chih Hung
AU - Chen, Yiting
AU - Lee, Sinhong
N1 - Funding Information:
This work was supported by the Ministry of Science and Technology of the Republic of China under Grant MOST 110-2221-E-006-143
Funding Information:
This work was supported by the Ministry of Science and Technology of the Republic of China under Grant MOST 110-2221-E-006-143-.
Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - In this paper, we propose an edge-guided video super-resolution (EGVSR) network that utilizes the edge information of the image to effectively recover high-frequency details for high-resolution frames. The reconstruction process consists of two stages. In the first stage, the Coarse Frame Reconstruction Network (CFRN) generates coarse SR frames. In addition, we propose the Edge-Prediction Network (EPN) to capture the edge details that help to supplement the missing high-frequency information. Unlike some prior SR works that tend to increase the depth of networks or use attention mechanisms to reconstruct large-size objects but ignore small-size objects, we propose the Attention Fusion Residual Block (AFRB) to process objects of different sizes. The AFRB, an enhanced version of the conventional residual block, performs fusion through a multi-scale channel attention mechanism and serves as the basic operation unit in the CFRN and the EPN. Then, in the second stage, we propose the Frame Refinement Network (FRN), which contains multiple convolution layers. Through the FRN, we fuse and refine the coarse SR frames and edge information learned from the first stage. Compared with the state-of-the-art methods, our SR model improves approximately 0.5% in PSNR and 1.8% in SSIM evaluation on the benchmark VID4 dataset when the number of parameters is reduced by 54%.
AB - In this paper, we propose an edge-guided video super-resolution (EGVSR) network that utilizes the edge information of the image to effectively recover high-frequency details for high-resolution frames. The reconstruction process consists of two stages. In the first stage, the Coarse Frame Reconstruction Network (CFRN) generates coarse SR frames. In addition, we propose the Edge-Prediction Network (EPN) to capture the edge details that help to supplement the missing high-frequency information. Unlike some prior SR works that tend to increase the depth of networks or use attention mechanisms to reconstruct large-size objects but ignore small-size objects, we propose the Attention Fusion Residual Block (AFRB) to process objects of different sizes. The AFRB, an enhanced version of the conventional residual block, performs fusion through a multi-scale channel attention mechanism and serves as the basic operation unit in the CFRN and the EPN. Then, in the second stage, we propose the Frame Refinement Network (FRN), which contains multiple convolution layers. Through the FRN, we fuse and refine the coarse SR frames and edge information learned from the first stage. Compared with the state-of-the-art methods, our SR model improves approximately 0.5% in PSNR and 1.8% in SSIM evaluation on the benchmark VID4 dataset when the number of parameters is reduced by 54%.
UR - http://www.scopus.com/inward/record.url?scp=85146278669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146278669&partnerID=8YFLogxK
U2 - 10.1109/RASSE54974.2022.9989570
DO - 10.1109/RASSE54974.2022.9989570
M3 - Conference contribution
AN - SCOPUS:85146278669
T3 - RASSE 2022 - IEEE International Conference on Recent Advances in Systems Science and Engineering, Symposium Proceedings
BT - RASSE 2022 - IEEE International Conference on Recent Advances in Systems Science and Engineering, Symposium Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering, RASSE 2022
Y2 - 7 November 2022 through 10 November 2022
ER -