Abstract
This paper reports on multiferroic properties of Ho substituted BiFeO 3 (Bi1-xHoxFeO3) ceramics. It is observed that for x=0.15, a prominent ferroelectric loop is seen at 300 K even if the system remains in rhombohedral (R3c) phase without appearance of any observable impurity phases. A well shaped MH loop is observed at 10 K for x=0.15. However it showed ferromagnetism, confirming the contribution of Ho 3+ towards enhancement of ferromagnetic properties of BiFeO 3 at 300 K. Suppression of impurity phases of pure BiFeO3 bulk ceramic favors the reduction of mobile oxygen vacancies and reduces leakage current, due to which ferroelectric properties of BiFeO3 is enhanced. We argue that Ho substitution at Bi site is likely to suppress the spiral spin modulation and at the same time increase the canting angle, which favors enhanced multiferroic properties. XRD, SEM, magnetization, polarization and chemical bonding analysis measurements were carried out to explain the multiferroic behavior.
Original language | English |
---|---|
Pages (from-to) | 1557-1564 |
Number of pages | 8 |
Journal | Journal of Physics and Chemistry of Solids |
Volume | 71 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2010 Nov |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Materials Science
- Condensed Matter Physics