Effect of oxidation on the breakup and monosized droplet generation of the molten metal jet

Wei-Hsiang Lai, Chia Chin Chen

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The objective of this study is to determine how breakup and monosized droplet generation of a molten metal (tin-lead, Sn63-Pb37) jet is affected by oxygen concentration. The major experimental equipment is the monosized droplet generator, which breaks up a laminar stream of liquid metal jet to produce monodispersed droplets by forced vibration generated from a piezoelectric disk within the proper frequency range. The results show that high oxygen concentration retards the breakup process of the molten metal jet, and the "critical oxygen concentration" is about 910 ppm at 1 atm and 350°C, which will result in sudden breakup failure. The molten metal jet can be further divided into three regimes, according to the effect of oxygen concentration, i.e., a "breakup regime," an "incomplete breakup regime," and a "breakup failure regime." As long as a monosized droplet stream is formed, the breakup lengths of jets with different oxygen concentrations are almost the same, even when oxide islands appear. The behavior of the excited liquid metal jet still conforms to Rayleigh's theory, i.e., λmin = πD, and the working frequencies are limited within the range πD < λ < 2λopt, both when surface tension is up to 500 × 10-3 N/m, and when oxide islands appear, i.e., in both the breakup and incomplete breakup regimes. However, in the breakup failure regime, Rayleigh's theory is not applicable, and even Wallace's surface tension reduction theory [12] cannot explain this reaction. It must be explained by integrating the combined research models of Haj-Hariri and Poulikakos [13] and Artem'ev and Kochetov [14], i.e., the oxide film islands grow and join until reaching high surface flexural rigidity at the critical oxygen concentration, which will suppress the capillary instability and result in a sudden failure of the breakup process.

Original languageEnglish
Pages (from-to)81-102
Number of pages22
JournalAtomization and Sprays
Volume15
Issue number1
DOIs
Publication statusPublished - 2005 Nov 10

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Effect of oxidation on the breakup and monosized droplet generation of the molten metal jet'. Together they form a unique fingerprint.

Cite this