Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

The aim of the present study was to investigate the effects of passivation treatment (34% nitric acid passivation, 400°C heated in air, and aged in 100°C de-ionized water) and surface modification (2 hr and 8 hr vacuum-brazed treatments) on the ion dissolution and nano-surface characteristics of Ti-6Al-4V exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid (EDTA) at 37°C. The results indicated that the original nano-surface characteristics and microstructure would influence the ion dissolution but not change the capability of the Ca and P adsorption upon immersion. Of the three passivated treatments, 400°C thermal treatment for both 2 hr brazed Ti-6Al-4V (B2) and 8 hr brazed Ti-6Al-4V (B8) exhibits a substantial reduction in the constituent release compared to the acid passivated and water aged treatment, because the thicker thickness and rutile structure of surface oxide could provide the better dissolution resistance for 400°C-treated specimens. Moreover, the reduced Ti2Cu and increased α-titanium structure in B8 specimen could also improve ion dissolution resistance in comparison with B2 specimen. After soaking in Hank/EDTA solution, the adsorbed non-elemental Ca and P for all groups of specimens were observed by XPS analysis, and the AES depth-profile analysis indicate that the oxide films of all groups of specimens thicken with the longer immersion periods. The increasing oxide thickness may be the factor in the improved dissolution resistance at the longer immersion periods. The relation between lower dissolution rate and thicker oxide films were observed for all groups of specimens. The results suggest that the dissolution kinetics was governed by the metal ion transport through the oxide film in this study.

Original languageEnglish
Pages (from-to)15-27
Number of pages13
JournalJournal of Materials Science: Materials in Medicine
Volume17
Issue number1
DOIs
Publication statusPublished - 2006 Jan 1

Fingerprint

Diamines
Ethylenediaminetetraacetic acid
Passivation
Acetic Acid
Oxides
Surface treatment
Dissolution
Immersion
Ions
Oxide films
Nitric Acid
Water Purification
Ion Transport
Vacuum
Titanium
Adsorption
Hot Temperature
Metals
Nitric acid
Air

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Cite this

@article{776747d363394d13869bb956714a5efc,
title = "Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution",
abstract = "The aim of the present study was to investigate the effects of passivation treatment (34{\%} nitric acid passivation, 400°C heated in air, and aged in 100°C de-ionized water) and surface modification (2 hr and 8 hr vacuum-brazed treatments) on the ion dissolution and nano-surface characteristics of Ti-6Al-4V exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid (EDTA) at 37°C. The results indicated that the original nano-surface characteristics and microstructure would influence the ion dissolution but not change the capability of the Ca and P adsorption upon immersion. Of the three passivated treatments, 400°C thermal treatment for both 2 hr brazed Ti-6Al-4V (B2) and 8 hr brazed Ti-6Al-4V (B8) exhibits a substantial reduction in the constituent release compared to the acid passivated and water aged treatment, because the thicker thickness and rutile structure of surface oxide could provide the better dissolution resistance for 400°C-treated specimens. Moreover, the reduced Ti2Cu and increased α-titanium structure in B8 specimen could also improve ion dissolution resistance in comparison with B2 specimen. After soaking in Hank/EDTA solution, the adsorbed non-elemental Ca and P for all groups of specimens were observed by XPS analysis, and the AES depth-profile analysis indicate that the oxide films of all groups of specimens thicken with the longer immersion periods. The increasing oxide thickness may be the factor in the improved dissolution resistance at the longer immersion periods. The relation between lower dissolution rate and thicker oxide films were observed for all groups of specimens. The results suggest that the dissolution kinetics was governed by the metal ion transport through the oxide film in this study.",
author = "Lee, {T. M.}",
year = "2006",
month = "1",
day = "1",
doi = "10.1007/s10856-006-6325-3",
language = "English",
volume = "17",
pages = "15--27",
journal = "Journal of Materials Science: Materials in Electronics",
issn = "0957-4522",
publisher = "Springer New York",
number = "1",

}

TY - JOUR

T1 - Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution

AU - Lee, T. M.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - The aim of the present study was to investigate the effects of passivation treatment (34% nitric acid passivation, 400°C heated in air, and aged in 100°C de-ionized water) and surface modification (2 hr and 8 hr vacuum-brazed treatments) on the ion dissolution and nano-surface characteristics of Ti-6Al-4V exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid (EDTA) at 37°C. The results indicated that the original nano-surface characteristics and microstructure would influence the ion dissolution but not change the capability of the Ca and P adsorption upon immersion. Of the three passivated treatments, 400°C thermal treatment for both 2 hr brazed Ti-6Al-4V (B2) and 8 hr brazed Ti-6Al-4V (B8) exhibits a substantial reduction in the constituent release compared to the acid passivated and water aged treatment, because the thicker thickness and rutile structure of surface oxide could provide the better dissolution resistance for 400°C-treated specimens. Moreover, the reduced Ti2Cu and increased α-titanium structure in B8 specimen could also improve ion dissolution resistance in comparison with B2 specimen. After soaking in Hank/EDTA solution, the adsorbed non-elemental Ca and P for all groups of specimens were observed by XPS analysis, and the AES depth-profile analysis indicate that the oxide films of all groups of specimens thicken with the longer immersion periods. The increasing oxide thickness may be the factor in the improved dissolution resistance at the longer immersion periods. The relation between lower dissolution rate and thicker oxide films were observed for all groups of specimens. The results suggest that the dissolution kinetics was governed by the metal ion transport through the oxide film in this study.

AB - The aim of the present study was to investigate the effects of passivation treatment (34% nitric acid passivation, 400°C heated in air, and aged in 100°C de-ionized water) and surface modification (2 hr and 8 hr vacuum-brazed treatments) on the ion dissolution and nano-surface characteristics of Ti-6Al-4V exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid (EDTA) at 37°C. The results indicated that the original nano-surface characteristics and microstructure would influence the ion dissolution but not change the capability of the Ca and P adsorption upon immersion. Of the three passivated treatments, 400°C thermal treatment for both 2 hr brazed Ti-6Al-4V (B2) and 8 hr brazed Ti-6Al-4V (B8) exhibits a substantial reduction in the constituent release compared to the acid passivated and water aged treatment, because the thicker thickness and rutile structure of surface oxide could provide the better dissolution resistance for 400°C-treated specimens. Moreover, the reduced Ti2Cu and increased α-titanium structure in B8 specimen could also improve ion dissolution resistance in comparison with B2 specimen. After soaking in Hank/EDTA solution, the adsorbed non-elemental Ca and P for all groups of specimens were observed by XPS analysis, and the AES depth-profile analysis indicate that the oxide films of all groups of specimens thicken with the longer immersion periods. The increasing oxide thickness may be the factor in the improved dissolution resistance at the longer immersion periods. The relation between lower dissolution rate and thicker oxide films were observed for all groups of specimens. The results suggest that the dissolution kinetics was governed by the metal ion transport through the oxide film in this study.

UR - http://www.scopus.com/inward/record.url?scp=29944435350&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=29944435350&partnerID=8YFLogxK

U2 - 10.1007/s10856-006-6325-3

DO - 10.1007/s10856-006-6325-3

M3 - Article

C2 - 16389468

AN - SCOPUS:29944435350

VL - 17

SP - 15

EP - 27

JO - Journal of Materials Science: Materials in Electronics

JF - Journal of Materials Science: Materials in Electronics

SN - 0957-4522

IS - 1

ER -