Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst

Dang Thuan Tran, Ching Lung Chen, Jo Shu Chang

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)

Abstract

In this work, a one-step extraction/transesterification process was developed to directly convert wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 into biodiesel using immobilized Burkholderia lipase as the catalyst. The microalgal biomass (water content of 86-91%; oil content 14-63%) was pre-treated by sonication to disrupt the cell walls and then directly mixed with methanol and solvent to carry out the enzymatic transesterification. Addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalga. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, using high-lipid-content microalgae as feedstock appears to be desirable.

Original languageEnglish
Pages (from-to)213-221
Number of pages9
JournalBioresource technology
Volume135
DOIs
Publication statusPublished - 2013 May

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint Dive into the research topics of 'Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst'. Together they form a unique fingerprint.

Cite this