TY - JOUR
T1 - Effect of the addition of zirconium on the electrical, optical, and mechanical properties and microstructure of ITO thin films
AU - Li, Ying Tsung
AU - Chen, Dian Ting
AU - Han, Chang Fu
AU - Lin, Jen Fin
N1 - Publisher Copyright:
© 2020
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/1
Y1 - 2021/1
N2 - Indium Tin Oxide (ITO) thin films are doped with zirconium (Zr) by varying the direct current (DC) power sources to investigate the effects of Zr doping on surface morphology, microstructure, and mechanical, electrical, and optical properties. The ITO:Zr specimens possess more grains with the (400) orientation when the DC power is elevated. Crystallinity and surface roughness are highly dependent on grain size. The product value of crystallinity and grain size is observed to be positively correlated to the surface roughness. Reduced modulus and hardness of specimen are lowered by increasing the DC power, and these two parameters are also positively correlated to the product of crystallinity and grain size. In this study, the choice of 35 W as the power can bring in the highest transmittance (>81%) in the wavelength region of 380–2600 nm and the lowest resistivity of all specimens. Increasing the power to be higher than 35 W will produce more excessive carriers to reduce the carrier concentration and mobility, thus elevating the resistivity. A significant rise in the infrared transmittance (800–2600 nm) compared to the undoped ITO thin film is achieved by doping the Zr into ITO with a DC power of 35 W.
AB - Indium Tin Oxide (ITO) thin films are doped with zirconium (Zr) by varying the direct current (DC) power sources to investigate the effects of Zr doping on surface morphology, microstructure, and mechanical, electrical, and optical properties. The ITO:Zr specimens possess more grains with the (400) orientation when the DC power is elevated. Crystallinity and surface roughness are highly dependent on grain size. The product value of crystallinity and grain size is observed to be positively correlated to the surface roughness. Reduced modulus and hardness of specimen are lowered by increasing the DC power, and these two parameters are also positively correlated to the product of crystallinity and grain size. In this study, the choice of 35 W as the power can bring in the highest transmittance (>81%) in the wavelength region of 380–2600 nm and the lowest resistivity of all specimens. Increasing the power to be higher than 35 W will produce more excessive carriers to reduce the carrier concentration and mobility, thus elevating the resistivity. A significant rise in the infrared transmittance (800–2600 nm) compared to the undoped ITO thin film is achieved by doping the Zr into ITO with a DC power of 35 W.
UR - http://www.scopus.com/inward/record.url?scp=85092631724&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092631724&partnerID=8YFLogxK
U2 - 10.1016/j.vacuum.2020.109844
DO - 10.1016/j.vacuum.2020.109844
M3 - Article
AN - SCOPUS:85092631724
SN - 0042-207X
VL - 183
JO - Vacuum
JF - Vacuum
M1 - 109844
ER -