TY - JOUR
T1 - Effect of TiO2 addition on surface microstructure and bioactivity of fluorapatite coatings deposited using Nd:YAG laser
AU - Chien, Chi Sheng
AU - Ko, Yu Sheng
AU - Kuo, Tsung Yuan
AU - Liao, Tze Yuan
AU - Lee, Tzer Min
AU - Hong, Ting Fu
N1 - Funding Information:
This study was financially supported by the Chimei Foundation Hospital, Taiwan, R.O.C., under grant 110990223, and the National Science Council, Taiwan, R.O.C., under grant NSC 100-2622-E-218-002-CC3.
PY - 2014/4
Y1 - 2014/4
N2 - To study the effect of titania (TiO2) addition on the surface microstructure and bioactivity of fluorapatite coatings, fluorapatite was mixed with TiO2 in 1:0.5 (FA + 0.5TiO2), 1:0.8 (FA + 0.8TiO 2), and 1:1 (FA + TiO2) ratios (wt%) and clad on Ti-6Al-4V substrates using an Nd:YAG laser system. The experimental results show that the penetration depth of the weld decreases with increasing TiO2 content. Moreover, the subgrain structure of the coating layer changes from a fine cellular-like structure to a cellular-dendrite-like structure as the amount of TiO2 increases. Consequently, as the proportion of TiO 2 decreases (increase in fluorapatite content), the Ca/P ratio of the coating layer also decreases. The immersion of specimens into simulated body fluid resulted in the formation of individual apatite. With a lower Ca/P ratio before immersion, the growth of the apatite was faster and then the coating layer provided a better bioactivity. X-ray diffraction analysis results show that prior to simulated body fluid immersion, the coating layer in all three specimens was composed mainly of fluorapatite, CaTiO3, and Al2O3 phases. Following simulated body fluid immersion, a peak corresponding to hydroxycarbonated apatite appeared after 2 days in the FA + 0.5TiO2 and FA + 0.8TiO2 specimens and after 7 days in the FA + TiO 2 specimen. Overall, the results show that although the bioactivity of the coating layer tended to decrease with increasing TiO2 content, in accordance with the above-mentioned ratios, the bioactivity of all three specimens remained generally good.
AB - To study the effect of titania (TiO2) addition on the surface microstructure and bioactivity of fluorapatite coatings, fluorapatite was mixed with TiO2 in 1:0.5 (FA + 0.5TiO2), 1:0.8 (FA + 0.8TiO 2), and 1:1 (FA + TiO2) ratios (wt%) and clad on Ti-6Al-4V substrates using an Nd:YAG laser system. The experimental results show that the penetration depth of the weld decreases with increasing TiO2 content. Moreover, the subgrain structure of the coating layer changes from a fine cellular-like structure to a cellular-dendrite-like structure as the amount of TiO2 increases. Consequently, as the proportion of TiO 2 decreases (increase in fluorapatite content), the Ca/P ratio of the coating layer also decreases. The immersion of specimens into simulated body fluid resulted in the formation of individual apatite. With a lower Ca/P ratio before immersion, the growth of the apatite was faster and then the coating layer provided a better bioactivity. X-ray diffraction analysis results show that prior to simulated body fluid immersion, the coating layer in all three specimens was composed mainly of fluorapatite, CaTiO3, and Al2O3 phases. Following simulated body fluid immersion, a peak corresponding to hydroxycarbonated apatite appeared after 2 days in the FA + 0.5TiO2 and FA + 0.8TiO2 specimens and after 7 days in the FA + TiO 2 specimen. Overall, the results show that although the bioactivity of the coating layer tended to decrease with increasing TiO2 content, in accordance with the above-mentioned ratios, the bioactivity of all three specimens remained generally good.
UR - http://www.scopus.com/inward/record.url?scp=84902161854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902161854&partnerID=8YFLogxK
U2 - 10.1177/0954411914528307
DO - 10.1177/0954411914528307
M3 - Article
C2 - 24662108
AN - SCOPUS:84902161854
SN - 0954-4119
VL - 228
SP - 379
EP - 387
JO - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
JF - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
IS - 4
ER -