Effects of cesium content on the triple-cation lead halide perovskite photodetectors with enhanced detectivity and response time

Yuan Wen Hsiao, Jyun You Song, Hsuan Ta Wu, Kung Tung Hong, Ching Chich Leu, Chuan Feng Shih

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

This research reports on the effects of Cs doping in the Csx(FA0.75MA0.25PbI3)1−x based perovskites and photodetectors (PDs) with various Cs contents from 0% to 7.5%. The incorporation of 2.5–5% Cs markedly improved the crystal quality of perovskite films that in turns increased, the photoluminescence, absorbance, and quantum efficiency. Over-doping Cs upto 7.5% degraded the devices. X-ray photoemission spectroscopy shows that the binding energies of the Cs, Pb and I core levels shifted to high-energy side, indicating the Cs enter the lattice sites and improved the stability of the film. For PD applications, the influence of Cs doping in the perovskite was mostly on the reduction of rise time, causing by increase of the generation rate of carriers and reduction of trap densities of carriers. The 5% Cs-doped sample showed the best performance, because of the optimization of the grain size, crystal quality and trap density. As a result, the self-powered perovskite demonstrated an impressive performance with ~70% external quantum efficiency, 0.36 A W−1 responsivity, 1.15 × 1012 Jones, and rapid rise and decay time of 1.5 μs and 21 μs, respectively.

Original languageEnglish
Article number161621
JournalJournal of Alloys and Compounds
Volume889
DOIs
Publication statusPublished - 2022 Jan 5

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effects of cesium content on the triple-cation lead halide perovskite photodetectors with enhanced detectivity and response time'. Together they form a unique fingerprint.

Cite this