Abstract
The effects of hydrazine on the synthesis of Cu2ZnSnSe 4 (CZTSe) and Cu2CdSnSe4 (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu2Se, and Cu2SnSe 3, and Cu2SnSe3 and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazineenhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices.
Original language | English |
---|---|
Pages (from-to) | 291-295 |
Number of pages | 5 |
Journal | Thin Solid Films |
Volume | 544 |
DOIs | |
Publication status | Published - 2013 Oct 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry