Effects of interfacial tension and molecular dipole moment on the electrical characteristics of low-voltage-driven organic electronic devices

Fu Chiao Wu, Bo Liang Yeh, Tzu Hsiu Chou, Jen Sue Chen, Horng Long Cheng, Wei Yang Chou

Research output: Contribution to journalArticle

Abstract

In organic electronic/photonic devices, numerous types of interfaces and their properties exhibit profound correlation with device performance. For optimizing the performance of organic electronic/photonic devices, appropriate and effective interface engineering needs to be developed. In this study, a high dielectric constant material, hafnium dioxide (HfO2), and an organic semiconductor, N,N′-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13) were adopted as the dielectric and active layers, respectively, to fabricate low-voltage-driven organic thin-film transistors. Three kinds of insulating polymers were selected to serve as buffer layers (BLs) to modify HfO2. After the addition of BLs onto HfO2, the insulating properties of HfO2 and the microstructures of PTCDI-C13 active layers improved, resulting in considerably enhanced electrical characteristics and stability of the devices. Among different polymeric BLs, the BL polymer exhibiting smaller interfacial tension with PTCDI-C13 can induce PTCDI-C13 to form better microstructures and generate lower interfacial trap density despite the rougher topography of polymeric BL, leading to improved electrical characteristics of the corresponding device. However, we observed that BL polymer with larger dipole moment of side groups can yield better electrical stability of the corresponding device under continuous operation compared with polymers with smaller interfacial tension. During long-term operation, the dipoles can be aligned by an electric field and form a strong dipole layer to facilitate charge accumulation and alleviate device degradation caused by bias-stress-induced trap/defect states. We further adopted a BL polymer with both small interfacial tension and large dipole moment to fabricate low-voltage-driven organic complementary inverters. The inverter can exhibit high electrical characteristics and stability during continuous operation. Interfacial tension and molecular dipole moment are possible important issues for effective interface engineering.

Original languageEnglish
Pages (from-to)374-381
Number of pages8
JournalOrganic Electronics
Volume59
DOIs
Publication statusPublished - 2018 Aug 1

Fingerprint

Dipole moment
Buffer layers
low voltage
Surface tension
interfacial tension
dipole moments
Polymers
Electric potential
buffers
electronics
Photonic devices
polymers
Hafnium
Perylene
Microstructure
Semiconducting organic compounds
Thin film transistors
traps
engineering
photonics

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Chemistry(all)
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering

Cite this

@article{1db15588fbb946f8ac6f006a54b6854d,
title = "Effects of interfacial tension and molecular dipole moment on the electrical characteristics of low-voltage-driven organic electronic devices",
abstract = "In organic electronic/photonic devices, numerous types of interfaces and their properties exhibit profound correlation with device performance. For optimizing the performance of organic electronic/photonic devices, appropriate and effective interface engineering needs to be developed. In this study, a high dielectric constant material, hafnium dioxide (HfO2), and an organic semiconductor, N,N′-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13) were adopted as the dielectric and active layers, respectively, to fabricate low-voltage-driven organic thin-film transistors. Three kinds of insulating polymers were selected to serve as buffer layers (BLs) to modify HfO2. After the addition of BLs onto HfO2, the insulating properties of HfO2 and the microstructures of PTCDI-C13 active layers improved, resulting in considerably enhanced electrical characteristics and stability of the devices. Among different polymeric BLs, the BL polymer exhibiting smaller interfacial tension with PTCDI-C13 can induce PTCDI-C13 to form better microstructures and generate lower interfacial trap density despite the rougher topography of polymeric BL, leading to improved electrical characteristics of the corresponding device. However, we observed that BL polymer with larger dipole moment of side groups can yield better electrical stability of the corresponding device under continuous operation compared with polymers with smaller interfacial tension. During long-term operation, the dipoles can be aligned by an electric field and form a strong dipole layer to facilitate charge accumulation and alleviate device degradation caused by bias-stress-induced trap/defect states. We further adopted a BL polymer with both small interfacial tension and large dipole moment to fabricate low-voltage-driven organic complementary inverters. The inverter can exhibit high electrical characteristics and stability during continuous operation. Interfacial tension and molecular dipole moment are possible important issues for effective interface engineering.",
author = "Wu, {Fu Chiao} and Yeh, {Bo Liang} and Chou, {Tzu Hsiu} and Chen, {Jen Sue} and Cheng, {Horng Long} and Chou, {Wei Yang}",
year = "2018",
month = "8",
day = "1",
doi = "10.1016/j.orgel.2018.05.057",
language = "English",
volume = "59",
pages = "374--381",
journal = "Organic Electronics: physics, materials, applications",
issn = "1566-1199",
publisher = "Elsevier",

}

TY - JOUR

T1 - Effects of interfacial tension and molecular dipole moment on the electrical characteristics of low-voltage-driven organic electronic devices

AU - Wu, Fu Chiao

AU - Yeh, Bo Liang

AU - Chou, Tzu Hsiu

AU - Chen, Jen Sue

AU - Cheng, Horng Long

AU - Chou, Wei Yang

PY - 2018/8/1

Y1 - 2018/8/1

N2 - In organic electronic/photonic devices, numerous types of interfaces and their properties exhibit profound correlation with device performance. For optimizing the performance of organic electronic/photonic devices, appropriate and effective interface engineering needs to be developed. In this study, a high dielectric constant material, hafnium dioxide (HfO2), and an organic semiconductor, N,N′-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13) were adopted as the dielectric and active layers, respectively, to fabricate low-voltage-driven organic thin-film transistors. Three kinds of insulating polymers were selected to serve as buffer layers (BLs) to modify HfO2. After the addition of BLs onto HfO2, the insulating properties of HfO2 and the microstructures of PTCDI-C13 active layers improved, resulting in considerably enhanced electrical characteristics and stability of the devices. Among different polymeric BLs, the BL polymer exhibiting smaller interfacial tension with PTCDI-C13 can induce PTCDI-C13 to form better microstructures and generate lower interfacial trap density despite the rougher topography of polymeric BL, leading to improved electrical characteristics of the corresponding device. However, we observed that BL polymer with larger dipole moment of side groups can yield better electrical stability of the corresponding device under continuous operation compared with polymers with smaller interfacial tension. During long-term operation, the dipoles can be aligned by an electric field and form a strong dipole layer to facilitate charge accumulation and alleviate device degradation caused by bias-stress-induced trap/defect states. We further adopted a BL polymer with both small interfacial tension and large dipole moment to fabricate low-voltage-driven organic complementary inverters. The inverter can exhibit high electrical characteristics and stability during continuous operation. Interfacial tension and molecular dipole moment are possible important issues for effective interface engineering.

AB - In organic electronic/photonic devices, numerous types of interfaces and their properties exhibit profound correlation with device performance. For optimizing the performance of organic electronic/photonic devices, appropriate and effective interface engineering needs to be developed. In this study, a high dielectric constant material, hafnium dioxide (HfO2), and an organic semiconductor, N,N′-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13) were adopted as the dielectric and active layers, respectively, to fabricate low-voltage-driven organic thin-film transistors. Three kinds of insulating polymers were selected to serve as buffer layers (BLs) to modify HfO2. After the addition of BLs onto HfO2, the insulating properties of HfO2 and the microstructures of PTCDI-C13 active layers improved, resulting in considerably enhanced electrical characteristics and stability of the devices. Among different polymeric BLs, the BL polymer exhibiting smaller interfacial tension with PTCDI-C13 can induce PTCDI-C13 to form better microstructures and generate lower interfacial trap density despite the rougher topography of polymeric BL, leading to improved electrical characteristics of the corresponding device. However, we observed that BL polymer with larger dipole moment of side groups can yield better electrical stability of the corresponding device under continuous operation compared with polymers with smaller interfacial tension. During long-term operation, the dipoles can be aligned by an electric field and form a strong dipole layer to facilitate charge accumulation and alleviate device degradation caused by bias-stress-induced trap/defect states. We further adopted a BL polymer with both small interfacial tension and large dipole moment to fabricate low-voltage-driven organic complementary inverters. The inverter can exhibit high electrical characteristics and stability during continuous operation. Interfacial tension and molecular dipole moment are possible important issues for effective interface engineering.

UR - http://www.scopus.com/inward/record.url?scp=85047959295&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047959295&partnerID=8YFLogxK

U2 - 10.1016/j.orgel.2018.05.057

DO - 10.1016/j.orgel.2018.05.057

M3 - Article

AN - SCOPUS:85047959295

VL - 59

SP - 374

EP - 381

JO - Organic Electronics: physics, materials, applications

JF - Organic Electronics: physics, materials, applications

SN - 1566-1199

ER -