Abstract
Titanium alloys (Ti6Al4V), while subjected to high temperature surface treatment, experience altered nano-surface characteristics. The effects of such surface treatments are examined, including the initial adhesion force experienced by osteoblasts, the Ca/P adsorption capability, and the nano-surface properties, including the amounts of amphoteric Ti-OH groups, surface topography, and surface roughness. The initial adhesion force is considered a quantitative indicator of cyto-compatibility in vitro. Previously, a cyto-detacher was applied in a pioneer attempt measuring the initial adhesion force of fibroblasts on a metal surface. Presently, the cyto-detacher is further applied to evaluate the initial adhesion force of osteoblasts. Results reveal that (1) titanium alloys subjected to heat treatment could promote the adsorption capability of Ca and P; (2) titanium alloys subjected to heat treatment could have higher initial osteoblast adhesion forces; (3) the adhesion strength of osteoblasts, ranging from 38.5 to 58.9 nN (nanonewtons), appears stronger for rougher surfaces. It is concluded that the heat treatment could have impacted the biocompatibility in terms of the initial osteoblast adhesion force and Ca/P adsorption capability.
Original language | English |
---|---|
Article number | 335709 |
Journal | Nanotechnology |
Volume | 19 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2008 Aug 20 |
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Mechanical Engineering
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Electrical and Electronic Engineering