Effects of nano-surface properties on initial osteoblast adhesion and Ca/P adsorption ability for titanium alloys

C. C. Wang, Y. C. Hsu, M. C. Hsieh, S. P. Yang, Fong-chin Su, Tzer-Min Lee

Research output: Contribution to journalArticle

18 Citations (Scopus)


Titanium alloys (Ti6Al4V), while subjected to high temperature surface treatment, experience altered nano-surface characteristics. The effects of such surface treatments are examined, including the initial adhesion force experienced by osteoblasts, the Ca/P adsorption capability, and the nano-surface properties, including the amounts of amphoteric Ti-OH groups, surface topography, and surface roughness. The initial adhesion force is considered a quantitative indicator of cyto-compatibility in vitro. Previously, a cyto-detacher was applied in a pioneer attempt measuring the initial adhesion force of fibroblasts on a metal surface. Presently, the cyto-detacher is further applied to evaluate the initial adhesion force of osteoblasts. Results reveal that (1) titanium alloys subjected to heat treatment could promote the adsorption capability of Ca and P; (2) titanium alloys subjected to heat treatment could have higher initial osteoblast adhesion forces; (3) the adhesion strength of osteoblasts, ranging from 38.5 to 58.9 nN (nanonewtons), appears stronger for rougher surfaces. It is concluded that the heat treatment could have impacted the biocompatibility in terms of the initial osteoblast adhesion force and Ca/P adsorption capability.

Original languageEnglish
Article number335709
Issue number33
Publication statusPublished - 2008 Aug 20


All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Bioengineering
  • Chemistry(all)
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Mechanics of Materials

Cite this