TY - JOUR
T1 - Effects of pontic span and fiber reinforcement on fracture strength of multi-unit provisional fixed partial dentures
AU - Chang, Min Chieh
AU - Hung, Chun Cheng
AU - Chen, Wen Cheng
AU - Tseng, Shang Chun
AU - Chen, Yung Chung
AU - Wang, Jen Chyan
N1 - Funding Information:
This research is partially supported and sponsored by the Ministry of Science and Technology , Taiwan, R.O.C. under Grant no. NSC98-2320-B-037-004-MY3 .
Funding Information:
This research is partially supported and sponsored by the Ministry of Science and Technology, Taiwan, R.O.C. under Grant no. NSC98-2320-B-037-004-MY3.
Publisher Copyright:
© 2019 Association for Dental Sciences of the Republic of China
PY - 2019/9
Y1 - 2019/9
N2 - Background/purpose: Clinically, PMMA resin is extensively used for fabricating provisional FPDs. However, fracture often occurs due to the unsatisfactory mechanical strength, especially within connectors of long-span provisional FPDs. The purpose of this study is to evaluate the fracture load of fiber-reinforced provisional FPDs with various pontic span lengths, and to identify the most suitable span length for fiber-reinforced long-span provisional FPDs. Materials and methods: Fifty-six provisional FPDs with various pontic span lengths were fabricated. Seven samples from each group were reinforced with glass fibers. Unreinforced counterparts served as control. The samples were fixed on the abutments after thermocycling and then received a fatigue test. Subsequently, they were mechanically loaded until fracture, and the initial fracture load and fracture patterns were recorded. Statistical analysis, including two-sample t-test, one-way, two-way ANOVA, Tukey-Kramer HSD post hoc analysis and χ2 test were used to evaluate mechanical performance. Results: The mean fracture load of FPDs with 14 mm pontic span length is significantly higher than the other lengths. The fracture load of each reinforced group is significantly higher than each counterpart control. There is no interaction between two variables, pontic span and fiber reinforcement. With fiber reinforcement, the fracture patterns were altered from catastrophic fracture to bent or partial fracture. But, the fracture patterns were not affected by pontic span. Conclusion: The fracture load of acrylic FPDs decreases significantly when pontic span length is greater than 17 mm. Adding glass fibers into long-span provisional FPDs can significantly improve the fracture resistance and fracture patterns.
AB - Background/purpose: Clinically, PMMA resin is extensively used for fabricating provisional FPDs. However, fracture often occurs due to the unsatisfactory mechanical strength, especially within connectors of long-span provisional FPDs. The purpose of this study is to evaluate the fracture load of fiber-reinforced provisional FPDs with various pontic span lengths, and to identify the most suitable span length for fiber-reinforced long-span provisional FPDs. Materials and methods: Fifty-six provisional FPDs with various pontic span lengths were fabricated. Seven samples from each group were reinforced with glass fibers. Unreinforced counterparts served as control. The samples were fixed on the abutments after thermocycling and then received a fatigue test. Subsequently, they were mechanically loaded until fracture, and the initial fracture load and fracture patterns were recorded. Statistical analysis, including two-sample t-test, one-way, two-way ANOVA, Tukey-Kramer HSD post hoc analysis and χ2 test were used to evaluate mechanical performance. Results: The mean fracture load of FPDs with 14 mm pontic span length is significantly higher than the other lengths. The fracture load of each reinforced group is significantly higher than each counterpart control. There is no interaction between two variables, pontic span and fiber reinforcement. With fiber reinforcement, the fracture patterns were altered from catastrophic fracture to bent or partial fracture. But, the fracture patterns were not affected by pontic span. Conclusion: The fracture load of acrylic FPDs decreases significantly when pontic span length is greater than 17 mm. Adding glass fibers into long-span provisional FPDs can significantly improve the fracture resistance and fracture patterns.
UR - http://www.scopus.com/inward/record.url?scp=85064091789&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064091789&partnerID=8YFLogxK
U2 - 10.1016/j.jds.2018.11.008
DO - 10.1016/j.jds.2018.11.008
M3 - Article
AN - SCOPUS:85064091789
SN - 1991-7902
VL - 14
SP - 309
EP - 317
JO - Journal of Dental Sciences
JF - Journal of Dental Sciences
IS - 3
ER -