Effects of retaining ring on contact stress uniformity in chemical mechanical planarization

Tian-Shiang Yang, Ian Hu, Kuo-Shen Chen, Chia Liang Liu, Yao Chen Wang

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Chemical mechanical planarization (CMP) plays a critical role in achieving near-perfect planarity of interconnection and metal layers in ultralarge-scale integrated (ULSI) semiconductor devices. In practice, during the CMP process there is a retaining ring that keeps the wafer being planarized in place. To understand how the retaining ring's existence affects the uniformity of the contact stress-and hence the uniformity of the material removal rate-on the wafer surface, here we use two-dimensional fluid film lubrication and contact mechanics models to calculate the contact stress and fluid (i.e., slurry) pressure distributions on the wafer-pad interface. In particular, the effects of the retaining ring width and its back pressure on the contact stress uniformity are examined. Our numerical results indicate that the presence of a retaining ring generally decreases the exceedingly high contact stress (due to stress concentration) near the wafer edge, and hence improves the contact stress uniformity. Meanwhile, it also increases the slurry flow resistance and therefore reduces the slurry flowrate. The reduction in slurry flowrate, however, is relatively insignificant. Through systematicparameter studies, we deduce certain guidelines for choosing the optimal retaining ring width and back pressure that minimize the contact stress non-uniformity on the wafer surface.

Original languageEnglish
Pages (from-to)381-392
Number of pages12
JournalJournal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao
Volume30
Issue number5
Publication statusPublished - 2009 Oct 1

Fingerprint

Chemical mechanical polishing
Contacts (fluid mechanics)
Fluids
Semiconductor devices
Pressure distribution
Lubrication
Stress concentration
Mechanics
Metals

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Cite this

@article{129ac54024b9414d9fdbef35c8e29833,
title = "Effects of retaining ring on contact stress uniformity in chemical mechanical planarization",
abstract = "Chemical mechanical planarization (CMP) plays a critical role in achieving near-perfect planarity of interconnection and metal layers in ultralarge-scale integrated (ULSI) semiconductor devices. In practice, during the CMP process there is a retaining ring that keeps the wafer being planarized in place. To understand how the retaining ring's existence affects the uniformity of the contact stress-and hence the uniformity of the material removal rate-on the wafer surface, here we use two-dimensional fluid film lubrication and contact mechanics models to calculate the contact stress and fluid (i.e., slurry) pressure distributions on the wafer-pad interface. In particular, the effects of the retaining ring width and its back pressure on the contact stress uniformity are examined. Our numerical results indicate that the presence of a retaining ring generally decreases the exceedingly high contact stress (due to stress concentration) near the wafer edge, and hence improves the contact stress uniformity. Meanwhile, it also increases the slurry flow resistance and therefore reduces the slurry flowrate. The reduction in slurry flowrate, however, is relatively insignificant. Through systematicparameter studies, we deduce certain guidelines for choosing the optimal retaining ring width and back pressure that minimize the contact stress non-uniformity on the wafer surface.",
author = "Tian-Shiang Yang and Ian Hu and Kuo-Shen Chen and Liu, {Chia Liang} and Wang, {Yao Chen}",
year = "2009",
month = "10",
day = "1",
language = "English",
volume = "30",
pages = "381--392",
journal = "Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao",
issn = "0257-9731",
publisher = "Chinese Mechanical Engineering Society",
number = "5",

}

TY - JOUR

T1 - Effects of retaining ring on contact stress uniformity in chemical mechanical planarization

AU - Yang, Tian-Shiang

AU - Hu, Ian

AU - Chen, Kuo-Shen

AU - Liu, Chia Liang

AU - Wang, Yao Chen

PY - 2009/10/1

Y1 - 2009/10/1

N2 - Chemical mechanical planarization (CMP) plays a critical role in achieving near-perfect planarity of interconnection and metal layers in ultralarge-scale integrated (ULSI) semiconductor devices. In practice, during the CMP process there is a retaining ring that keeps the wafer being planarized in place. To understand how the retaining ring's existence affects the uniformity of the contact stress-and hence the uniformity of the material removal rate-on the wafer surface, here we use two-dimensional fluid film lubrication and contact mechanics models to calculate the contact stress and fluid (i.e., slurry) pressure distributions on the wafer-pad interface. In particular, the effects of the retaining ring width and its back pressure on the contact stress uniformity are examined. Our numerical results indicate that the presence of a retaining ring generally decreases the exceedingly high contact stress (due to stress concentration) near the wafer edge, and hence improves the contact stress uniformity. Meanwhile, it also increases the slurry flow resistance and therefore reduces the slurry flowrate. The reduction in slurry flowrate, however, is relatively insignificant. Through systematicparameter studies, we deduce certain guidelines for choosing the optimal retaining ring width and back pressure that minimize the contact stress non-uniformity on the wafer surface.

AB - Chemical mechanical planarization (CMP) plays a critical role in achieving near-perfect planarity of interconnection and metal layers in ultralarge-scale integrated (ULSI) semiconductor devices. In practice, during the CMP process there is a retaining ring that keeps the wafer being planarized in place. To understand how the retaining ring's existence affects the uniformity of the contact stress-and hence the uniformity of the material removal rate-on the wafer surface, here we use two-dimensional fluid film lubrication and contact mechanics models to calculate the contact stress and fluid (i.e., slurry) pressure distributions on the wafer-pad interface. In particular, the effects of the retaining ring width and its back pressure on the contact stress uniformity are examined. Our numerical results indicate that the presence of a retaining ring generally decreases the exceedingly high contact stress (due to stress concentration) near the wafer edge, and hence improves the contact stress uniformity. Meanwhile, it also increases the slurry flow resistance and therefore reduces the slurry flowrate. The reduction in slurry flowrate, however, is relatively insignificant. Through systematicparameter studies, we deduce certain guidelines for choosing the optimal retaining ring width and back pressure that minimize the contact stress non-uniformity on the wafer surface.

UR - http://www.scopus.com/inward/record.url?scp=77954676416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954676416&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:77954676416

VL - 30

SP - 381

EP - 392

JO - Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao

JF - Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao

SN - 0257-9731

IS - 5

ER -