Effects of surface treatments and annealing on carbon-based molecular sieve membranes for gas separation

Liang Jun Wang, Franklin Chau Nan Hong

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


A new method in preparing carbon-based molecular sieve (CMS) membranes for gas separation has been proposed. Carbon-based films are deposited on porous Al 2 O 3 disks using examethyldisiloxane (HMDSO) by remote inductively coupled plasma (ICP) chemical vapor deposition (CVD). After treating the film with ion bombardment and subsequent pyrolysis at a high temperature, carbon-based molecule sieve membranes can be obtained, exhibiting a very high H 2 /N 2 selectivity around 100 and an extremely high permeance of H 2 around 1.5 × 10 -6 mol m -2 s -1 Pa -1 at 298 K. The O 2 /N 2 selectivity could reach 5.4 with the O 2 permeance of 2 × 10 -7 mol m -2 s -1 Pa -1 at 423 K. During surface treatments, HMDSO ions were found to be more effective than CH 4 , Ar, O 2 and N 2 ions to improve the selectivity and permeance. Short and optimized surface treatment periods were required for high efficiency. Without pyrolysis, surface treatments alone greatly reduced the H 2 and N 2 permeances and had no effect on the selectivity. Besides, without any surface treatment, pyrolysis alone greatly increased the H 2 and N 2 permeances, but had no improvement on the selectivity, owing to the creation of large pores by desorption of carbon. A combination of surface treatment and pyrolysis is necessary for simultaneously enhancing the permeance and the selectivity of CMS membranes, very different from the conventional pore-plugging mechanism in typical CVD.

Original languageEnglish
Pages (from-to)161-174
Number of pages14
JournalApplied Surface Science
Issue number1-4
Publication statusPublished - 2005 Feb 15

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films


Dive into the research topics of 'Effects of surface treatments and annealing on carbon-based molecular sieve membranes for gas separation'. Together they form a unique fingerprint.

Cite this