Efficacious CO2 Photoconversion to C2 and C3 Hydrocarbons on Upright SnS-SnS2 Heterojunction Nanosheet Frameworks

Chun Yuan Wu, Chia Ju Lee, Yi Hsing Yu, Hui Wen Tsao, Yen Hsun Su, Chao Cheng Kaun, Jen Sue Chen, Jih Jen Wu

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


In this work, SnS-SnS2 heterostructured upright nanosheet frameworks are constructed on FTO substrates, which demonstrate promising photocatalytic performances for the conversion of CO2 and water to C2 (acetaldehyde) and C3 (acetone) hydrocarbons without H2 formation. With post annealing in designated atmospheres, the photocatalytic activity of the SnS-SnS2 heterostructured nanosheet framework is critically enhanced by increasing the fraction of crystalline SnS in nanosheets through partial transformation of the SnS2 matrix to SnS but not obviously influenced by improving the crystallinity of the SnS2 matrix. DFT calculations indicate that transformed SnS possesses the CO2 adsorption sites with significantly lower activation energy for the rate-determining step to drive efficient CO2 conversion catalysis. The experimental results and DFT calculations suggest that the SnS-SnS2 heterojunction nanosheet framework photocatalyst experiences Z-scheme charge transfer dynamic to allow the water oxidation and CO2 reduction reactions occurring on the surfaces of SnS2 and SnS, respectively. The Z-scheme SnS-SnS2 heterostructured nanosheet framework photocatalyst exhibits not only efficient charge separation but also highly catalytic active sites to boost the photocatalytic activity for CO2 conversion to C2 and C3 hydrocarbons.

Original languageEnglish
Pages (from-to)4984-4992
Number of pages9
JournalACS Applied Materials and Interfaces
Issue number4
Publication statusPublished - 2021 Feb 3

All Science Journal Classification (ASJC) codes

  • Materials Science(all)


Dive into the research topics of 'Efficacious CO2 Photoconversion to C2 and C3 Hydrocarbons on Upright SnS-SnS2 Heterojunction Nanosheet Frameworks'. Together they form a unique fingerprint.

Cite this