TY - JOUR
T1 - Efficiency and performance tests of the sorptive building materials that reduce indoor formaldehyde concentrations
AU - Huang, Kun Chih
AU - Tsay, Yaw Shyan
AU - Lin, Fang Ming
AU - Lee, Ching Chang
AU - Chang, Jung Wei
N1 - Publisher Copyright:
© 2019 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/1
Y1 - 2019/1
N2 - The adsorption of volatile organic compounds by building materials reduces the pollutant concentrations in indoor air. We collected three interior building materials with adsorption potentials—latex paint, micro-carbonized plywood, and moisture-buffering siding—used the sorptive building materials test (SBMT) to determine how much they reduced indoor formaldehyde (HCHO) concentrations, and then assessed the consequent reduction in human cancer risk from HCHO inhalation. Adsorption of HCHO by building materials significantly improved the effective ventilation efficiency. For example, the equivalent ventilation rate for Celite siding—used for humidity control—was 1.44 m3/(m2h) at 25C, 50% relative humidity (RH); the loading factor (L) was 0.4 m2/m3, and the HCHO concentration was 0.2 ppm; this effect is equivalent to a higher ventilation rate of approximately 0.6 air changes per hour in a typical Taiwanese dwelling. There was also a substantial reduction of risk in Case MCP-2 (Cin,te: 245 μg/m3, 30C, 50% RH): males: down 5.73 × 10−4; females: down 4.84 × 10−4). The selection of adsorptive building materials for interior surfaces, therefore, significantly reduces human inhalation of HCHO. Our findings should encourage developing and using innovative building materials that help improve indoor air quality and thus provide building occupants with healthier working and living environments.
AB - The adsorption of volatile organic compounds by building materials reduces the pollutant concentrations in indoor air. We collected three interior building materials with adsorption potentials—latex paint, micro-carbonized plywood, and moisture-buffering siding—used the sorptive building materials test (SBMT) to determine how much they reduced indoor formaldehyde (HCHO) concentrations, and then assessed the consequent reduction in human cancer risk from HCHO inhalation. Adsorption of HCHO by building materials significantly improved the effective ventilation efficiency. For example, the equivalent ventilation rate for Celite siding—used for humidity control—was 1.44 m3/(m2h) at 25C, 50% relative humidity (RH); the loading factor (L) was 0.4 m2/m3, and the HCHO concentration was 0.2 ppm; this effect is equivalent to a higher ventilation rate of approximately 0.6 air changes per hour in a typical Taiwanese dwelling. There was also a substantial reduction of risk in Case MCP-2 (Cin,te: 245 μg/m3, 30C, 50% RH): males: down 5.73 × 10−4; females: down 4.84 × 10−4). The selection of adsorptive building materials for interior surfaces, therefore, significantly reduces human inhalation of HCHO. Our findings should encourage developing and using innovative building materials that help improve indoor air quality and thus provide building occupants with healthier working and living environments.
UR - http://www.scopus.com/inward/record.url?scp=85060450031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060450031&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0210416
DO - 10.1371/journal.pone.0210416
M3 - Article
C2 - 30677054
AN - SCOPUS:85060450031
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 1
M1 - e0210416
ER -