Efficiency enhancement on hybrid power system composed of irreversible solid oxide fuel cell and stirling engine by finite time thermodynamics

Hsin Yi Lai, Yi Ting Li, Yen Hsin Chan

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents the work for efficiency enhancement on a hybrid power system with an irreversible Solid Oxide Fuel Cell (SOFC) and Stirling Engine (SE) for various system design using the approach of finite-time thermodynamics. The SOFC-based cogeneration system was integrated with an SE and several heat components. The effects of design configurations using various interface components on system performance were investigated. By analyzing the SE with finite-time thermodynamics and considering multiple irreversible factors of output power given by the SOFC, the efficiency of the calculation can be more practical and accurate. In this study, the working efficiency of the proposed hybrid system was enhanced by 16.37% compared to that of the conventional system at an intermediate temperature of 873 K. The design approach proposed herein is considered an essential package for building highly efficient power systems working in the intermediate temperature range.

Original languageEnglish
Article number1037
JournalEnergies
Volume14
Issue number4
DOIs
Publication statusPublished - 2021 Feb 2

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Efficiency enhancement on hybrid power system composed of irreversible solid oxide fuel cell and stirling engine by finite time thermodynamics'. Together they form a unique fingerprint.

Cite this