Efficient conversion of propane in a microchannel reactor at ambient conditions

Chunsong Li, Haochen Zhang, Wenxuan Liu, Lin Sheng, Mu Jeng Cheng, Bingjun Xu, Guangsheng Luo, Qi Lu

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The oxidative dehydrogenation of propane, primarily sourced from shale gas, holds promise in meeting the surging global demand for propylene. However, this process necessitates high operating temperatures, which amplifies safety concerns in its application due to the use of mixed propane and oxygen. Moreover, these elevated temperatures may heighten the risk of overoxidation, leading to carbon dioxide formation. Here we introduce a microchannel reaction system designed for the oxidative dehydrogenation of propane within an aqueous environment, enabling highly selective and active propylene production at room temperature and ambient pressure with mitigated safety risks. A propylene selectivity of over 92% and production rate of 19.57 mmol mCu−2 h−1 are simultaneously achieved. This exceptional performance stems from the in situ creation of a highly active, oxygen-containing Cu catalytic surface for propane activation, and the enhanced propane transfer via an enlarged gas-liquid interfacial area and a reduced diffusion path by establishing a gas-liquid Taylor flow using a custom-made T-junction microdevice. This microchannel reaction system offers an appealing approach to accelerate gas-liquid-solid reactions limited by the solubility of gaseous reactant.

Original languageEnglish
Article number884
JournalNature communications
Volume15
Issue number1
DOIs
Publication statusPublished - 2024 Dec

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Efficient conversion of propane in a microchannel reactor at ambient conditions'. Together they form a unique fingerprint.

Cite this