Efficient frequency conversion based on resonant four-wave mixing

Chin Yao Cheng, Zi Yu Liu, Pi Sheng Hu, Tsai Ni Wang, Chung Yu Chien, Jia Kang Lin, Jz Yuan Juo, Jiun Shiuan Shiu, Ite A. Yu, Ying Cheng Chen, Yong Fan Chen

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Efficient frequency conversion of photons has important applications in optical quantum technology because the frequency range suitable for photon manipulation and communication usually varies widely. Recently, an efficient frequency conversion system using a double-3 four-wave mixing (FWM) process based on electromagnetically induced transparency (EIT) has attracted considerable attention because of its potential to achieve a nearly 100% conversion efficiency (CE). To obtain such a high CE, the spontaneous emission loss in this resonant-type FWM system must be suppressed considerably. A simple solution is to arrange the applied laser fields in a backward configuration. However, the phase mismatch due to this configuration can cause a significant decrease in CE. Here, we demonstrate that the phase mismatch can be effectively compensated by introducing the phase shift obtained by two-photon detuning. Under optimal conditions, we observe a wavelength conversion from 780 to 795 nm with a maximum CE of 91.2% ± 0.6% by using this backward FWM system at an optical depth of 130 in cold 87Rb atoms. The current work represents an important step toward achieving low-loss, high-fidelity quantum frequency conversion based on EIT.

Original languageEnglish
Pages (from-to)681-684
Number of pages4
JournalOptics Letters
Issue number3
Publication statusPublished - 2021 Feb 1

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Efficient frequency conversion based on resonant four-wave mixing'. Together they form a unique fingerprint.

Cite this