Abstract
This paper explores efficient memory management schemes for memory-based architectures of the fast Fourier transform (FFT). A data relocation scheme that merges multiple banks to lower the area requirement and power dissipation of memory-based FFT architectures is proposed. The proposed memory-addressing method can effectively deal with single-port, merged-bank memory with high-radix processing elements. Compared with conventional memory-based FFT designs using dual-port memory, the derived architecture has better performance in terms of area and power consumption. The proposed scheme is extended to a cached-memory FFT architecture to further reduce power dissipation. An 8192-point cached-memory FFT processor is implemented for digital video broadcasting-terrestrial/handheld applications by using 0.18-μ m 1P6M CMOS technology. Experimental results show that the proposed memory scheme consumes 10.1%-29.3% less area and 9.6%-67.9% less power compared with those of the multibank design.
Original language | English |
---|---|
Article number | 6930760 |
Pages (from-to) | 2162-2172 |
Number of pages | 11 |
Journal | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
Volume | 23 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2015 Oct |
All Science Journal Classification (ASJC) codes
- Software
- Hardware and Architecture
- Electrical and Electronic Engineering