Efficient Memory-Addressing Algorithms for FFT Processor Design

Hsin Fu Luo, Yi Jun Liu, Ming Der Shieh

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

This paper explores efficient memory management schemes for memory-based architectures of the fast Fourier transform (FFT). A data relocation scheme that merges multiple banks to lower the area requirement and power dissipation of memory-based FFT architectures is proposed. The proposed memory-addressing method can effectively deal with single-port, merged-bank memory with high-radix processing elements. Compared with conventional memory-based FFT designs using dual-port memory, the derived architecture has better performance in terms of area and power consumption. The proposed scheme is extended to a cached-memory FFT architecture to further reduce power dissipation. An 8192-point cached-memory FFT processor is implemented for digital video broadcasting-terrestrial/handheld applications by using 0.18-μ m 1P6M CMOS technology. Experimental results show that the proposed memory scheme consumes 10.1%-29.3% less area and 9.6%-67.9% less power compared with those of the multibank design.

Original languageEnglish
Article number6930760
Pages (from-to)2162-2172
Number of pages11
JournalIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Volume23
Issue number10
DOIs
Publication statusPublished - 2015 Oct

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Efficient Memory-Addressing Algorithms for FFT Processor Design'. Together they form a unique fingerprint.

Cite this