EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

Na+/H+ exchanger 1 (NHE1) is involved in cell migration but little is known about the signal pathways that regulate NHE1 activity and that are associated with tumor cell invasiveness. This study is to investigate the mechanisms by which epidermal growth factor (EGF) regulates NHE1 expression to promote cervical cancer cell invasiveness and the clinical significance in early-stage cervical cancer. NHE1 protein was scanty in normal or noncancerous cervical tissues of all surgical specimens examined (n = 92). Tumor tissues clearly expressed NHE1 protein with different amounts. The differential expression level of NHE1 is associated with the clinical outcome. NHE1 protein was also differentially expressed between normal cervical epithelial cells and two cervical cancer cell lines. Cervical cancer cells benefit some enhanced cellular functions from NHE1 abundance, such as cell volume regulation, migration, and invasion. Interestingly, NHE1 colocalized with EGF in cervical cancer tissues. Studies in cell culture systems indicated that EGF-stimulated NHE1 abundance in a time-dependent manner by post-translational regulation. This implies a likely autocrine or paracrine EGF stimulation of NHE1 production in vivo. In addition, the phosphoinositide 3-kinase pathway is the dominant signal controlling EGF-stimulated NHE1 abundance. Pharmacological inhibition of NHE1 activity markedly inhibited the basal and EGF-stimulated cervical cancer cell migration. Image studies and immunoprecipitaion experiments suggest that EGF-induced NHE1 translocation to the leading-edge lamellipodia, where NHE1 interacted with actin-associated protein Ezrin, thereby remodeling cytoskeleton and stimulating cervical cancer cell migration. In conclusion, EGF upregulates NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness.

Original languageEnglish
Pages (from-to)810-819
Number of pages10
JournalJournal of Cellular Physiology
Volume214
Issue number3
DOIs
Publication statusPublished - 2008 Mar 1

Fingerprint

Sodium-Hydrogen Antiporter
Epidermal Growth Factor
Uterine Cervical Neoplasms
Up-Regulation
Cells
Cell Movement
Tissue
Tumors
Proteins
Pseudopodia
1-Phosphatidylinositol 4-Kinase
Phosphatidylinositols
Cytoskeleton
Cell Size

All Science Journal Classification (ASJC) codes

  • Clinical Biochemistry
  • Cell Biology
  • Physiology

Cite this

@article{c7a4dccafa7c48cab837a52be862216c,
title = "EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness",
abstract = "Na+/H+ exchanger 1 (NHE1) is involved in cell migration but little is known about the signal pathways that regulate NHE1 activity and that are associated with tumor cell invasiveness. This study is to investigate the mechanisms by which epidermal growth factor (EGF) regulates NHE1 expression to promote cervical cancer cell invasiveness and the clinical significance in early-stage cervical cancer. NHE1 protein was scanty in normal or noncancerous cervical tissues of all surgical specimens examined (n = 92). Tumor tissues clearly expressed NHE1 protein with different amounts. The differential expression level of NHE1 is associated with the clinical outcome. NHE1 protein was also differentially expressed between normal cervical epithelial cells and two cervical cancer cell lines. Cervical cancer cells benefit some enhanced cellular functions from NHE1 abundance, such as cell volume regulation, migration, and invasion. Interestingly, NHE1 colocalized with EGF in cervical cancer tissues. Studies in cell culture systems indicated that EGF-stimulated NHE1 abundance in a time-dependent manner by post-translational regulation. This implies a likely autocrine or paracrine EGF stimulation of NHE1 production in vivo. In addition, the phosphoinositide 3-kinase pathway is the dominant signal controlling EGF-stimulated NHE1 abundance. Pharmacological inhibition of NHE1 activity markedly inhibited the basal and EGF-stimulated cervical cancer cell migration. Image studies and immunoprecipitaion experiments suggest that EGF-induced NHE1 translocation to the leading-edge lamellipodia, where NHE1 interacted with actin-associated protein Ezrin, thereby remodeling cytoskeleton and stimulating cervical cancer cell migration. In conclusion, EGF upregulates NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness.",
author = "Yihan Chiang and Cheng-Yang Chou and Keng-Fu Hsu and Yu-Fang Huang and Meng-Ru Shen",
year = "2008",
month = "3",
day = "1",
doi = "10.1002/jcp.21277",
language = "English",
volume = "214",
pages = "810--819",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness

AU - Chiang, Yihan

AU - Chou, Cheng-Yang

AU - Hsu, Keng-Fu

AU - Huang, Yu-Fang

AU - Shen, Meng-Ru

PY - 2008/3/1

Y1 - 2008/3/1

N2 - Na+/H+ exchanger 1 (NHE1) is involved in cell migration but little is known about the signal pathways that regulate NHE1 activity and that are associated with tumor cell invasiveness. This study is to investigate the mechanisms by which epidermal growth factor (EGF) regulates NHE1 expression to promote cervical cancer cell invasiveness and the clinical significance in early-stage cervical cancer. NHE1 protein was scanty in normal or noncancerous cervical tissues of all surgical specimens examined (n = 92). Tumor tissues clearly expressed NHE1 protein with different amounts. The differential expression level of NHE1 is associated with the clinical outcome. NHE1 protein was also differentially expressed between normal cervical epithelial cells and two cervical cancer cell lines. Cervical cancer cells benefit some enhanced cellular functions from NHE1 abundance, such as cell volume regulation, migration, and invasion. Interestingly, NHE1 colocalized with EGF in cervical cancer tissues. Studies in cell culture systems indicated that EGF-stimulated NHE1 abundance in a time-dependent manner by post-translational regulation. This implies a likely autocrine or paracrine EGF stimulation of NHE1 production in vivo. In addition, the phosphoinositide 3-kinase pathway is the dominant signal controlling EGF-stimulated NHE1 abundance. Pharmacological inhibition of NHE1 activity markedly inhibited the basal and EGF-stimulated cervical cancer cell migration. Image studies and immunoprecipitaion experiments suggest that EGF-induced NHE1 translocation to the leading-edge lamellipodia, where NHE1 interacted with actin-associated protein Ezrin, thereby remodeling cytoskeleton and stimulating cervical cancer cell migration. In conclusion, EGF upregulates NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness.

AB - Na+/H+ exchanger 1 (NHE1) is involved in cell migration but little is known about the signal pathways that regulate NHE1 activity and that are associated with tumor cell invasiveness. This study is to investigate the mechanisms by which epidermal growth factor (EGF) regulates NHE1 expression to promote cervical cancer cell invasiveness and the clinical significance in early-stage cervical cancer. NHE1 protein was scanty in normal or noncancerous cervical tissues of all surgical specimens examined (n = 92). Tumor tissues clearly expressed NHE1 protein with different amounts. The differential expression level of NHE1 is associated with the clinical outcome. NHE1 protein was also differentially expressed between normal cervical epithelial cells and two cervical cancer cell lines. Cervical cancer cells benefit some enhanced cellular functions from NHE1 abundance, such as cell volume regulation, migration, and invasion. Interestingly, NHE1 colocalized with EGF in cervical cancer tissues. Studies in cell culture systems indicated that EGF-stimulated NHE1 abundance in a time-dependent manner by post-translational regulation. This implies a likely autocrine or paracrine EGF stimulation of NHE1 production in vivo. In addition, the phosphoinositide 3-kinase pathway is the dominant signal controlling EGF-stimulated NHE1 abundance. Pharmacological inhibition of NHE1 activity markedly inhibited the basal and EGF-stimulated cervical cancer cell migration. Image studies and immunoprecipitaion experiments suggest that EGF-induced NHE1 translocation to the leading-edge lamellipodia, where NHE1 interacted with actin-associated protein Ezrin, thereby remodeling cytoskeleton and stimulating cervical cancer cell migration. In conclusion, EGF upregulates NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness.

UR - http://www.scopus.com/inward/record.url?scp=38449102040&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38449102040&partnerID=8YFLogxK

U2 - 10.1002/jcp.21277

DO - 10.1002/jcp.21277

M3 - Article

VL - 214

SP - 810

EP - 819

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

IS - 3

ER -