Electric vehicle charging in smart grid: Optimality and valley-filling algorithms

Niangjun Chen, Chee Wei Tan, Tony Q.S. Quek

Research output: Contribution to journalArticlepeer-review

102 Citations (Scopus)


Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence on fossil fuel and greenhouse gas emission. At the same time, charging a large fleet of EVs distributed across the residential area poses a challenge for the distribution network. In this paper, we formulate this problem by building on the optimal power flow (OPF) framework to model the network constraints that arises from charging EVs at different locations. To overcome the computational challenge when the control horizon is long, we study a nested optimization approach to decompose the joint OPF and EV charging problem. We characterize the optimal EV charging schedule to be a valley-filling profile, which allows us to develop an efficient offline algorithm with significantly lower computational complexity compared to centralized interior point solvers. Furthermore, we propose a decentralized online algorithm that dynamically tracks the valley-filling profile. Our algorithms are evaluated on the IEEE 14 bus system with real residential load profiles, and the simulations show that our online algorithm performs almost optimally under different settings.

Original languageEnglish
Article number6847105
Pages (from-to)1073-1083
Number of pages11
JournalIEEE Journal on Selected Topics in Signal Processing
Issue number6
Publication statusPublished - 2014 Dec 1

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Electrical and Electronic Engineering


Dive into the research topics of 'Electric vehicle charging in smart grid: Optimality and valley-filling algorithms'. Together they form a unique fingerprint.

Cite this