Electrochemistry of manganese in the hydrophilic N-butyl-N- methylpyrrolidinium dicyanamide room-temperature ionic liquid

Ding Xuan Zhuang, Ming Jay Deng, Po Yu Chen, I. Wen Sun

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

The electrochemistry of manganese was studied at a polycrystalline platinum disk electrode in the hydrophilic ionic liquid N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). The density and absolute viscosity of BMP-DCA were determined over a temperature range from 299.0 to 343.0 K. A polynomial equation describing the temperature dependence of the density is provided. The viscosity obeys the Arrhenius temperature dependence. The dicyanamide anion exhibits a good complexing ability toward transition metal ions, and, therefore, Mn(II) species can be introduced into the ionic liquid either by anodic dissolution of a manganese electrode or by dissolution of manganese (II) chloride. Cyclic voltammograms indicated that the electrodeposition of Mn from Mn(II) was preceded by an overpotential-driven nucleation process. When the potential scan was reversed, the anodic stripping wave was fairly smaller than the cathodic wave, indicating that the oxidation of the Mn electrodeposits was kinetically hindered. However, this behavior was less noticeable for massive Mn electrodeposits. Manganese coatings were prepared at copper substrates by controlled-potential electrodeposition and characterized by scanning electron microscope, energy-dispersive spectrometer (EDS), and powder X-ray diffraction spectrometer (XRD). EDS analysis indicated that the purity of the Mn electrodeposits was good, although no crystal signal of Mn was observed in the XRD patterns.

Original languageEnglish
Pages (from-to)D575-D579
JournalJournal of the Electrochemical Society
Volume155
Issue number9
DOIs
Publication statusPublished - 2008

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Electrochemistry of manganese in the hydrophilic N-butyl-N- methylpyrrolidinium dicyanamide room-temperature ionic liquid'. Together they form a unique fingerprint.

Cite this