Electrokinetic injection techniques in microfluidic chips

L. M. Fu, R. J. Yang, G. B. Lee, H. H. Liu

Research output: Contribution to journalArticlepeer-review

103 Citations (Scopus)

Abstract

The separation efficiency of a microfluidic chip is influenced to a significant degree by the flow field conditions within the injection microchannel. Therefore, an understanding of the physics of the flow within this channel is beneficial in the design and operation of such a system. The configuration of an injection system is determined by the volume of the sample plug that is to be delivered to the separation process. Accordingly, this paper addresses the design and testing of injection systems with a variety of configurations, including a simple cross, a double-T, and a triple-T configuration. This paper also presents the design of a unique multi-T injection configuration. Each injection system cycles through a predetermined series of steps, in which the electric field magnitude and distribution within the various channels is strictly manipulated, to effectuate a virtual valve. The unique multi-T configuration injection system presented within this paper has the ability to simulate the functions of the cross, double-T, and triple-T systems through appropriate manipulations of the electric field within its various channels. In other words, the proposed design successfully combines several conventional injection systems within a single microfluidic chip.

Original languageEnglish
Pages (from-to)5084-5091
Number of pages8
JournalAnalytical chemistry
Volume74
Issue number19
DOIs
Publication statusPublished - 2002 Oct 1

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Fingerprint Dive into the research topics of 'Electrokinetic injection techniques in microfluidic chips'. Together they form a unique fingerprint.

Cite this