Electromechanical characterization of cinnamophilin, a natural thromboxane A 2 receptor antagonist with anti-arrhythmic activity, in guinea-pig heart

G. J. Chang, M. J. Su, T. S. Wu, W. P. Chen, C. M. Kuo

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Background and purpose: Cinnamophilin, a thromboxane A 2 receptor antagonist, has been identified as a prominent anti-arrhythmic agent in rat heart. This study aimed to determine its electromechanical and anti-arrhythmic effects in guinea-pig hearts. Experimental approach: Microelectrodes were used to study action potentials in ventricular papillary muscles. Fluo-3 fluorimetric ratio and whole-cell voltage-clamp techniques were used to record calcium transients and membrane currents in single ventricular myocytes, respectively. Intracardiac electrocardiograms were obtained and the anti-arrhythmic efficacy was determined from isolated perfused hearts. Key results: In papillary muscles, cinnamophilin decreased the maximal rate of upstroke (V max) and duration of action potential, and reduced the contractile force. In single ventricular myocytes, cinnamophilin reduced Ca 2+ transient amplitude. Cinnamophilin decreased the L-type Ca 2+ current (I Ca,L)(IC 50=7.5 μM) with use-dependency, induced a negative shift of the voltage-dependent inactivation and retarded recovery from inactivation. Cinnamophilin also decreased the Na + current (I Na) (IC 50=2.7 μM) and to a lesser extent, the delayed outward (I K), inward rectifier (I K1), and ATP-sensitive (I K,ATP) K + currents. In isolated perfused hearts, cinnamophilin prolonged the AV nodal conduction interval and Wenckebach cycle length and the refractory periods of the AV node, His-Purkinje system and ventricle, while shortening the ventricular repolarization time. Additionally, cinnamophilin reduced the occurrence of reperfusion-induced ventricular fibrillation. Conclusions and implications: These results suggest that the promising anti-arrhythmic effect and the changes in the electromechanical function induced by cinnamophilin in guinea-pig heart can be chiefly accounted for by inhibition of I Ca,L and I Na.

Original languageEnglish
Pages (from-to)110-123
Number of pages14
JournalBritish Journal of Pharmacology
Issue number1
Publication statusPublished - 2008 Jan

All Science Journal Classification (ASJC) codes

  • Pharmacology


Dive into the research topics of 'Electromechanical characterization of cinnamophilin, a natural thromboxane A <sub>2</sub> receptor antagonist with anti-arrhythmic activity, in guinea-pig heart'. Together they form a unique fingerprint.

Cite this