Electron and Ion Heating Characteristics during Magnetic Reconnection in the MAST Spherical Tokamak

H. Tanabe, T. Yamada, T. Watanabe, K. Gi, K. Kadowaki, M. Inomoto, R. Imazawa, M. Gryaznevich, C. Michael, B. Crowley, N. J. Conway, R. Scannell, J. Harrison, I. Fitzgerald, A. Meakins, N. Hawkes, K. G. McClements, T. O'Gorman, C. Z. Cheng, Y. Ono

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Electron and ion heating characteristics during merging reconnection start-up on the MAST spherical tokamak have been revealed in detail using a 130 channel yttrium aluminum garnet (YAG) and a 300 channel Ruby-Thomson scattering system and a new 32 chord ion Doppler tomography diagnostic. Detailed 2D profile measurements of electron and ion temperature together with electron density have been achieved for the first time and it is found that electron temperature forms a highly localized hot spot at the X point and ion temperature globally increases downstream. For the push merging experiment when the guide field is more than 3 times the reconnecting field, a thick layer of a closed flux surface form by the reconnected field sustains the temperature profile for longer than the electron and ion energy relaxation time ∼4-10 ms, both characteristic profiles finally forming a triple peak structure at the X point and downstream. An increase in the toroidal guide field results in a more peaked electron temperature profile at the X point, and also produces higher ion temperatures at this point, but the ion temperature profile in the downstream region is unaffected.

Original languageEnglish
Article number215004
JournalPhysical review letters
Volume115
Issue number21
DOIs
Publication statusPublished - 2015 Nov 18

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Electron and Ion Heating Characteristics during Magnetic Reconnection in the MAST Spherical Tokamak'. Together they form a unique fingerprint.

Cite this