TY - JOUR
T1 - Elucidating the mechanism of photocatalytic reduction of bicarbonate (aqueous CO2) into formate and other organics
AU - Nguyen, Van Can
AU - Nimbalkar, Dipak B.
AU - Hoang Huong, Vu
AU - Lee, Yuh Lang
AU - Teng, Hsisheng
N1 - Publisher Copyright:
© 2023
PY - 2023/11
Y1 - 2023/11
N2 - The photocatalytic reduction of CO2 under solar irradiation is an ideal approach to mitigating global warming, and reducing aqueous forms of CO2 that interact strongly with a catalyst (e.g., HCO3−) is a promising strategy to expedite such reductions. This study uses Pt-deposited graphene oxide dots as a model photocatalyst to elucidate the mechanism of HCO3− reduction. The photocatalyst steadily catalyzes the reduction of an HCO3− solution (at pH = 9) containing an electron donor under 1-sun illumination over a period of 60 h to produce H2 and organic compounds (formate, methanol, and acetate). H2 is derived from solution-contained H2O, which undergoes photocatalytic cleavage to produce •H atoms. Isotopic analysis reveals that all of the organics formed via interactions between HCO3− and •H. This study proposes mechanistic steps, which are governed by the reacting behavior of the •H, to correlate the electron transfer steps and product formation of this photocatalysis. This photocatalysis achieves overall apparent quantum efficiency of 27% in the formation of reaction products under monochromatic irradiation at 420 nm. This study demonstrates the effectiveness of aqueous-phase photocatalysis in converting aqueous CO2 into valuable chemicals and the importance of H2O-derived •H in governing the product selectivity and formation kinetics.
AB - The photocatalytic reduction of CO2 under solar irradiation is an ideal approach to mitigating global warming, and reducing aqueous forms of CO2 that interact strongly with a catalyst (e.g., HCO3−) is a promising strategy to expedite such reductions. This study uses Pt-deposited graphene oxide dots as a model photocatalyst to elucidate the mechanism of HCO3− reduction. The photocatalyst steadily catalyzes the reduction of an HCO3− solution (at pH = 9) containing an electron donor under 1-sun illumination over a period of 60 h to produce H2 and organic compounds (formate, methanol, and acetate). H2 is derived from solution-contained H2O, which undergoes photocatalytic cleavage to produce •H atoms. Isotopic analysis reveals that all of the organics formed via interactions between HCO3− and •H. This study proposes mechanistic steps, which are governed by the reacting behavior of the •H, to correlate the electron transfer steps and product formation of this photocatalysis. This photocatalysis achieves overall apparent quantum efficiency of 27% in the formation of reaction products under monochromatic irradiation at 420 nm. This study demonstrates the effectiveness of aqueous-phase photocatalysis in converting aqueous CO2 into valuable chemicals and the importance of H2O-derived •H in governing the product selectivity and formation kinetics.
UR - http://www.scopus.com/inward/record.url?scp=85164289503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85164289503&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2023.06.155
DO - 10.1016/j.jcis.2023.06.155
M3 - Article
C2 - 37392682
AN - SCOPUS:85164289503
SN - 0021-9797
VL - 649
SP - 918
EP - 928
JO - Journal of Colloid And Interface Science
JF - Journal of Colloid And Interface Science
ER -