Embedment of Multiple Transition Metal Impurities into WS2 Monolayer for Bandstructure Modulation

Ming Deng Siao, Yung Chang Lin, Tao He, Meng Yu Tsai, Kuei Yi Lee, Shou Yi Chang, Kuang I. Lin, Yen Fu Lin, Mei Yin Chou, Kazu Suenaga, Po Wen Chiu

Research output: Contribution to journalArticlepeer-review

Abstract

Band structure by design in 2D layered semiconductors is highly desirable, with the goal to acquire the electronic properties of interest through the engineering of chemical composition, structure, defect, stacking, or doping. For atomically thin transition metal dichalcogenides, substitutional doping with more than one single type of transition metals is the task for which no feasible approach is proposed. Here, the growth of WS2 monolayer is shown codoped with multiple kinds of transition metal impurities via chemical vapor deposition controlled in a diffusion-limited mode. Multielement embedment of Cr, Fe, Nb, and Mo into the host lattice is exemplified. Abundant impurity states thus generate in the bandgap of the resultant WS2 and provide a robust switch of charging/discharging states upon sweep of an electric filed. A profound memory window exists in the transfer curves of doped WS2 field-effect transistors, forming the basis of binary states for robust nonvolatile memory. The doping technique presented in this work brings one step closer to the rational design of 2D semiconductors with desired electronic properties.

Original languageEnglish
JournalSmall
DOIs
Publication statusAccepted/In press - 2021

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Embedment of Multiple Transition Metal Impurities into WS<sub>2</sub> Monolayer for Bandstructure Modulation'. Together they form a unique fingerprint.

Cite this