Abstract
For separating water into hydrogen and oxygen through intermediate Cu–Cl compounds, the new system configurations for 5-step, 4-step and 3-step thermochemical cycles using electrolysis of CuCl/HCl or CuCl and Brayton cycle are addressed in Aspen Plus® environment. To address the feasible predictions by thermodynamic systems, we found that (i) the pressure and temperature affect the product yields of CuO ∗ CuCl2 and CuCl in the hydrolysis and oxygen production processes; (ii) the internal heat recovery ratio (IHRR) and the feed ratio of H2O/CuCl2 dominate the energy efficiencies and Cl2 production, respectively. Based on the prescribed operating conditions, the comparative evaluations show that the 5-step Cu–Cl cycle using CuCl electrolyzer can ensure the highest energy efficiency while IHRR = 72%, the 3-step Cu–Cl cycle using CuCl electrolyzer can ensure the less equipment and the highest energy efficiency while IHRR = 100%. The 4-step Cu–Cl cycle using CuCl/HCl electrolyzer, where the electrolyzer prevents copper crossovers and safely produces the pure hydrogen gas at low temperature, has a high possibility of commercialization due to the lower grade heat requirement, the less number of equipment and the higher energy efficiency.
Original language | English |
---|---|
Pages (from-to) | 15990-16002 |
Number of pages | 13 |
Journal | International Journal of Hydrogen Energy |
Volume | 42 |
Issue number | 25 |
DOIs | |
Publication status | Published - 2017 Jun 22 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology