Energy Aware Collaborative Machine Learning on Energy-Harvesting Devices

Qi Hui Sun, Chia Heng Tu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Performing machine learning tasks on low end devices enables the development of various smart applications. Especially, these low end devices are often equipped with ultra-low-power microcontroller units (MCUs) that have weak computation power and few memory resources. It is a more challenging work to put these machine learning tasks on those end devices powered by harvested ambient energy, which are often referred to as energy-harvesting (EH) devices, since the unstable ambient energy can lead to the execution failure of the machine learning tasks. This paper proposes an adaptive energy-aware design to coordinate multiple EH devices to accomplish multi-class classification computation. It also leverages the concept of the One-vs-All (OVA) strategy turning a multi-class classification into multiple binary classifications. The experimental results show our work performs better than the widely used round-robin policy and self-greedy policy in consideration of time and energy consumption.

Original languageEnglish
Title of host publication2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages179-180
Number of pages2
ISBN (Electronic)9798350324174
DOIs
Publication statusPublished - 2023
Event2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, Taiwan
Duration: 2023 Jul 172023 Jul 19

Publication series

Name2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

Conference

Conference2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
Country/TerritoryTaiwan
CityPingtung
Period23-07-1723-07-19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Human-Computer Interaction
  • Information Systems
  • Information Systems and Management
  • Electrical and Electronic Engineering
  • Media Technology
  • Instrumentation

Fingerprint

Dive into the research topics of 'Energy Aware Collaborative Machine Learning on Energy-Harvesting Devices'. Together they form a unique fingerprint.

Cite this