TY - JOUR
T1 - Engagement of ubiquitination and de-ubiquitination at rostral ventrolateral medulla in experimental brain death
AU - Wu, Carol H.
AU - Chan, Julie Y.
AU - Chou, Jimmy Li Jer
AU - Chan, Samuel H.
AU - Chang, Alice Y.
N1 - Funding Information:
This work was supported by the National Science Council (NSC-96-2320-B-110-002 and NSC-97-2320-B-182A-007-MY3 to SHHC; NSC-97-2752-B-110-002-PAE, NSC-96-2752-B-110-002-PAE, and NSC-100-2321-B-182A-006 to AYWC), and Chang Gung Memorial Hospital (CMRPG871341 and CLRPG871342 to SHHC), Taiwan, Republic of China.
PY - 2012
Y1 - 2012
N2 - Background: Whereas brain death is a vitally important clinical phenomenon, our contemporary understanding on its underlying cellular mechanisms remains elusive. This study evaluated whether the ubiquitin-proteasome system (UPS) in the rostral ventrolateral medulla (RVLM), a neural substrate that our laboratory identified previously to be intimately related to brain death, is engaged in this fatal process. Methods: We performed proteomics, Western Blot, real-time PCR, ELISA and pharmacological experiments in conjunction with a clinically relevant experimental endotoxemia model of brain death based on intravenous administration of Escherichia coli lipopolysaccharide in adult male Sprague-Dawley rats. Results: Proteomics, Western blot and enzyme activity analyses demonstrated that polyubiquitination was preserved and de-ubiquitination by ubiquitin C-terminal hydrolase isozyme-L1 (UCH-L1) was sustained, alongside increased monoubiquitin availability or proteasome activity in RVLM over the course of experimental endotoxemia. However, real-time PCR revealed no significant alteration in proteasome subunit alpha type-1, ubiquitin or UCH-L1 at mRNA level. Functionally, whereas microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) potentiated survival, an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or an UCH-L1 inhibitor exacerbated mortality. Conclusions: We proposed previously that the progression towards brain death entails a tug-of-war between pro-death and pro-life programs in RVLM. It is conceivable that ubiquitination or de-ubiquitination in RVLM participate in brain death by regulating the degradation of the proteins involved in those programs.
AB - Background: Whereas brain death is a vitally important clinical phenomenon, our contemporary understanding on its underlying cellular mechanisms remains elusive. This study evaluated whether the ubiquitin-proteasome system (UPS) in the rostral ventrolateral medulla (RVLM), a neural substrate that our laboratory identified previously to be intimately related to brain death, is engaged in this fatal process. Methods: We performed proteomics, Western Blot, real-time PCR, ELISA and pharmacological experiments in conjunction with a clinically relevant experimental endotoxemia model of brain death based on intravenous administration of Escherichia coli lipopolysaccharide in adult male Sprague-Dawley rats. Results: Proteomics, Western blot and enzyme activity analyses demonstrated that polyubiquitination was preserved and de-ubiquitination by ubiquitin C-terminal hydrolase isozyme-L1 (UCH-L1) was sustained, alongside increased monoubiquitin availability or proteasome activity in RVLM over the course of experimental endotoxemia. However, real-time PCR revealed no significant alteration in proteasome subunit alpha type-1, ubiquitin or UCH-L1 at mRNA level. Functionally, whereas microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) potentiated survival, an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or an UCH-L1 inhibitor exacerbated mortality. Conclusions: We proposed previously that the progression towards brain death entails a tug-of-war between pro-death and pro-life programs in RVLM. It is conceivable that ubiquitination or de-ubiquitination in RVLM participate in brain death by regulating the degradation of the proteins involved in those programs.
UR - http://www.scopus.com/inward/record.url?scp=84862215591&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862215591&partnerID=8YFLogxK
U2 - 10.1186/1423-0127-19-48
DO - 10.1186/1423-0127-19-48
M3 - Article
C2 - 22545670
AN - SCOPUS:84862215591
SN - 1021-7770
VL - 19
JO - Journal of biomedical science
JF - Journal of biomedical science
IS - 1
M1 - 48
ER -