Engagement of ubiquitination and de-ubiquitination at rostral ventrolateral medulla in experimental brain death

Carol H. Wu, Julie Y. Chan, Jimmy Li Jer Chou, Samuel H. Chan, Alice Y. Chang

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Background: Whereas brain death is a vitally important clinical phenomenon, our contemporary understanding on its underlying cellular mechanisms remains elusive. This study evaluated whether the ubiquitin-proteasome system (UPS) in the rostral ventrolateral medulla (RVLM), a neural substrate that our laboratory identified previously to be intimately related to brain death, is engaged in this fatal process. Methods: We performed proteomics, Western Blot, real-time PCR, ELISA and pharmacological experiments in conjunction with a clinically relevant experimental endotoxemia model of brain death based on intravenous administration of Escherichia coli lipopolysaccharide in adult male Sprague-Dawley rats. Results: Proteomics, Western blot and enzyme activity analyses demonstrated that polyubiquitination was preserved and de-ubiquitination by ubiquitin C-terminal hydrolase isozyme-L1 (UCH-L1) was sustained, alongside increased monoubiquitin availability or proteasome activity in RVLM over the course of experimental endotoxemia. However, real-time PCR revealed no significant alteration in proteasome subunit alpha type-1, ubiquitin or UCH-L1 at mRNA level. Functionally, whereas microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) potentiated survival, an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or an UCH-L1 inhibitor exacerbated mortality. Conclusions: We proposed previously that the progression towards brain death entails a tug-of-war between pro-death and pro-life programs in RVLM. It is conceivable that ubiquitination or de-ubiquitination in RVLM participate in brain death by regulating the degradation of the proteins involved in those programs.

Original languageEnglish
Article number48
JournalJournal of biomedical science
Volume19
Issue number1
DOIs
Publication statusPublished - 2012

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Engagement of ubiquitination and de-ubiquitination at rostral ventrolateral medulla in experimental brain death'. Together they form a unique fingerprint.

Cite this