Abstract
The purpose of this study was to investigate an engineered composite of multilayer acellular tendon slices seeded with bone marrow stromal cells (BMSCs) as a possible solution for tendon reconstruction. BMSCs were harvested from 15 rabbits and infraspinatus tendons were harvested from 17 dogs. The decellularized tendons were sectioned in longitudinal slices with a thickness of 50 μm. The BMSCs were seeded on the slices and then the slices were bundled into one composite. The composite was implanted into a rabbit patellar tendon defect. Tendon slices without BMSCs were implanted into the contralateral patellar tendon as a control. The composites were evaluated by histology and qRT-PCR. The viability of BMSCs was assessed using a fluorescent marker. Histology showed viable cells between the collagen fibres on the cell-seeded side. Analysis by qRT-PCR showed higher tenomodulin, collagen type III, MMP3 and MMP13 expressions and lower collagen type I expression in the cell-seeded composite than in the tendon slices without BMSCs. We conclude that BMSCs can survive in a multilayer composite, express a tendon phenotype and enhance the metabolism of tendon in vivo. This in vivo study suggests a potential utility of this composite in tendon reconstruction.
Original language | English |
---|---|
Pages (from-to) | 238-244 |
Number of pages | 7 |
Journal | Journal of Tissue Engineering and Regenerative Medicine |
Volume | 6 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2012 Mar |
All Science Journal Classification (ASJC) codes
- Medicine (miscellaneous)
- Biomaterials
- Biomedical Engineering