Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2

Chun Yen Chen, Yu Chun Chen, Hsiao Chen Huang, Chieh Chen Huang, Wen Lung Lee, Jo Shu Chang

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)

Abstract

Microalgae have emerged as promising resources for highly unsaturated fatty acids. In this study, an indigenous microalga identified as Nannochloropsis oceanica CY2 was grown photoautotrophically to produce eicosapentaenoic acid (EPA; 20:5, n-3). Specific engineering strategies were employed to stimulate EPA accumulation in the microalgal cells. The results show that BG-11 was the most effective medium to grow N. oceanica CY2, giving an EPA content and biomass concentration of 2.38% (per dry cell weight) and 1.53g/l. The EPA content nearly doubled when using the optimal nitrogen source (NaNO3) at a concentration of 1.50g/l. The illumination system also markedly affected the EPA content for the photoautotrophic microalga. When the microalgal culture was illuminated with a red LED, an impressively high EPA content of 5.5% was obtained. Finally, using semi-batch cultures operations with LED-blue illumination, the EPA content of N. oceanica CY2 was stably maintained at 5.0%.

Original languageEnglish
Pages (from-to)160-167
Number of pages8
JournalBioresource technology
Volume147
DOIs
Publication statusPublished - 2013 Nov

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2'. Together they form a unique fingerprint.

Cite this