Enhanced adsorption on TiO2 photoelectrodes of dye-sensitized solar cells by electrochemical methods dye

Shanmuganathan Venkatesan, Yun Yu Chen, Hsisheng Teng, Yuh Lang Lee

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


Dye-adsorption is an important step in the fabrication of dye-sensitized solar cells (DSSCs). The classical dye-adsorption method is performed by spontaneous process and, to obtain the optimal cell efficiencies, about 16–24 h are required, which is considered uneconomical for the mass production of DSSCs. To solve this problem, here, a quick dye adsorption process based on electrochemical methods including cyclic voltammetry, constant potential, and constant current techniques are the first time utilized to prepare photoelectrodes for DSSC applications. To obtain the optimal cell efficiencies, the experimental conditions are regulated. Among these methods, the electrodes prepared using the constant potential methods (3 V and 4 V for 60 and 30 min, respectively) have high performance in DSSCs under room light and one-sun conditions. This method significantly reduces the time for dye adsorption from 16 to 24 h to 30 min or ~ 1 h. The cells using these electrodes have high incident photon to current efficiencies, high recombination resistances, high electron lifetimes, and low dark current densities. Owing to these characteristics, the DSSCs achieve efficiencies as high as 8.27% and 14.49%, respectively, under one-sun and room light conditions. These efficiencies are identical to that of the efficiencies obtain for the cells prepared using the classical adsorption process.

Original languageEnglish
Article number163959
JournalJournal of Alloys and Compounds
Publication statusPublished - 2022 May 15

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Enhanced adsorption on TiO2 photoelectrodes of dye-sensitized solar cells by electrochemical methods dye'. Together they form a unique fingerprint.

Cite this