Abstract
Experiments were performed to demonstrate enhancement of heat transfer around a horizontal cylinder by the presence of acoustic excitation. The horizontal cylinder was heated uniformly and placed inside a wind tunnel. The wall temperatures around the cylinder were measured and are used to determine the local heat transfer in the circumferential direction. To avoid interference with the flow, the acoustic generator, which was a loud speaker, was placed downstream of the cylinder. The frequency of the sound Fe, was set equal to the natural frequency, Fn, of the shedding vortex in the wake or a multiple of Fn. Therefore, synchronization of vortex shedding with acoustic wave can be expected. The excitation frequencies selected were Fe/Fn = 1, 2, 3, up to 8. Other frequencies at Fe/Fn = 1.5, 2.5, 3.5, up to 7.5 were also selected for comparison. During the experiments, the sound pressure varied from 0 to 100 dB and the Reynolds number varied from 2938 to 8814. The heat transfer around the cylinder was found to be significantly enhanced by the acoustic waves. More detailed measurements for the energy spectrum of the acoustic waves generated by the current speaker were made. This provides a better understanding of the physical process. Flow visualization is also performed to demonstrate synchronization of vortex shedding with acoustic excitation. The effect of sound pressure levels and Reynolds numbers on the wall heat transfer are presented and discussed.
Original language | English |
---|---|
Pages (from-to) | 256-266 |
Number of pages | 11 |
Journal | Journal of thermophysics and heat transfer |
Volume | 20 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2006 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Aerospace Engineering
- Mechanical Engineering
- Fluid Flow and Transfer Processes
- Space and Planetary Science