Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments

W. F. Cheng, C. F. Hung, K. F. Hsu, C. Y. Chai, L. He, M. Ling, L. A. Slater, R. B.S. Roden, T. C. Wu

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)


Self-replicating RNA vaccines (RNA replicons) have emerged as an attractive approach for tumor immunotherapy. RNA replicons do not integrate into host chromosomes, eliminating the concern for oncogenicity associated with a DNA vaccine. In this study, we used human papillomavirus type 16 (HPV-16) E7 as a model antigen and evaluated E7-specific immunity generated by a Sindbis virus self-replicating RNA vector, SIN-rep5. Three different constructs were created to target E7 antigen to different cellular localizations: (1) E7, a cytosolic/nuclear protein; (2) Sig/E7, a secretory protein; (3) Sig/E7/LAMP-1, in which we linked the transmembrane and cytoplasmic regions of the lysosome-associated membrane protein 1 (LAMP-1) to E7 protein to target E7 to the endosomal/lysosomal compartment. We found that the RNA replicon vaccine containing the Sig/E7/LAMP-1 fusion gene generated the highest E7-specific T cell-mediated immune responses and antitumor effects relative to RNA vaccines containing either wild-type E7 or Sig/E7. Our in vitro studies demonstrated that E7 antigen from Sig/E7/LAMP-1 RNA replicon-transfected apoptotic cells can be taken up by bone marrow-derived dendritic cells (DCs) and presented more efficiently through the MHC class I pathway than wild-type E7 RNA replicon-transfected apoptotic cells. Furthermore, our data revealed that CD8+ T cells, CD4+ T cells, and NK cells were important for the antitumor effects generated by Sig/E7/LAMP-1 RNA vaccination. These results indicate that targeting antigen to the endosomal/lysosomal compartment via fusion to LAMP-1 may greatly enhance the potency of self-replicating RNA vaccines.

Original languageEnglish
Pages (from-to)235-252
Number of pages18
JournalHuman Gene Therapy
Issue number3
Publication statusPublished - 2001 Feb 10

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments'. Together they form a unique fingerprint.

Cite this