TY - JOUR
T1 - Epidermal growth factor-induced cyclooxygenase-2 enhances head and neck squamous cell carcinoma metastasis through fibronectin up-regulation
AU - Hsu, Jinn Yuan
AU - Chang, Kwang Yu
AU - Chen, Shang Hung
AU - Lee, Chung Ta
AU - Chang, Sheng Tsung
AU - Cheng, Hung Chi
AU - Chang, Wen Chang
AU - Chen, Ben Kuen
PY - 2015
Y1 - 2015
N2 - Epidermal growth factor receptor (EGFR) activation is a major cause of metastasis in many cancers, such as head and neck squamous cell carcinoma (HNSCC). However, whether the induction of cyclooxygenase-2 (COX-2) mediates EGF-enhanced HNSCC metastasis remains unclear. Interestingly, we found that EGF induced COX-2 expression mainly in HNSCC. The tumor cell transformation induced by EGF was repressed by COX- 2 knockdown, and this repression was reversed by simultaneously treating the cells with EGF and prostaglandin E2 (PGE2). The down-regulation of COX-2 expression or inhibition of COX-2 activity significantly blocked EGF enhancement of cell migration and invasion, but the addition of PGE2 compensated for this inhibitory effect in COX- 2-knockdown cells. COX-2 depletion inhibited EGF-induced matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-9, and fibronectin expression and Rac1/cdc42 activation. The inhibitory effect of COX-2 depletion on MMPs and the fibronectin/ Rac1/cdc42 axis were reversed by co-treatment with PGE2. Furthermore, depletion of fibronectin impeded the COX-2-enhanced binding of HNSCC cells to endothelial cells and tumor cells metastatic seeding of the lungs. These results demonstrate that EGF-induced COX-2 expression enhances HNSCC metastasis via activation of the fibronectin signaling pathway. The inhibition of COX-2 expression and activation may be a potential strategy for the treatment of EGFR-mediated HNSCC metastasis.
AB - Epidermal growth factor receptor (EGFR) activation is a major cause of metastasis in many cancers, such as head and neck squamous cell carcinoma (HNSCC). However, whether the induction of cyclooxygenase-2 (COX-2) mediates EGF-enhanced HNSCC metastasis remains unclear. Interestingly, we found that EGF induced COX-2 expression mainly in HNSCC. The tumor cell transformation induced by EGF was repressed by COX- 2 knockdown, and this repression was reversed by simultaneously treating the cells with EGF and prostaglandin E2 (PGE2). The down-regulation of COX-2 expression or inhibition of COX-2 activity significantly blocked EGF enhancement of cell migration and invasion, but the addition of PGE2 compensated for this inhibitory effect in COX- 2-knockdown cells. COX-2 depletion inhibited EGF-induced matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-9, and fibronectin expression and Rac1/cdc42 activation. The inhibitory effect of COX-2 depletion on MMPs and the fibronectin/ Rac1/cdc42 axis were reversed by co-treatment with PGE2. Furthermore, depletion of fibronectin impeded the COX-2-enhanced binding of HNSCC cells to endothelial cells and tumor cells metastatic seeding of the lungs. These results demonstrate that EGF-induced COX-2 expression enhances HNSCC metastasis via activation of the fibronectin signaling pathway. The inhibition of COX-2 expression and activation may be a potential strategy for the treatment of EGFR-mediated HNSCC metastasis.
UR - http://www.scopus.com/inward/record.url?scp=84922706108&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922706108&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.2783
DO - 10.18632/oncotarget.2783
M3 - Article
C2 - 25595899
AN - SCOPUS:84922706108
SN - 1949-2553
VL - 6
SP - 1723
EP - 1739
JO - Oncotarget
JF - Oncotarget
IS - 3
ER -