Epigenetic histone methylation regulates transforming growth factor β-1 expression following bile duct ligation in rats

Shyr Ming Sheen-Chen, Chung Ren Lin, Kuan Hung Chen, Chien Hui Yang, Chien Te Lee, Hui Wen Huang, Chun Ying Huang

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Background: Multiple mechanisms contribute to the liver fibrosis following cholestasis. Recent research has focused on the role of transforming growth factor β-1 (TGF-β1) in the progression of fibrosis. The aim of our study is to examine the role of epigenetic chromatin marks, such as histone H3 lysine methylation (H3Kme), in bile duct ligation (BDL)-induced TGF-β1 gene expression in rat liver. Methods: Time course of methylated-histone H3 and SET7/9 recruitment were determined by chromatin immunoprecipitation in livers from BDL rats on days 1, 4, 9 and 14. Levels of TGF-β1 and SET7/9 were determined by western blots. The effect of SET7/9 knockdown on BDL-induced expression of TGF-β1, serum enzymes and liver collagen content was studied in vivo. Results: Results showed that BDL increased the expression of the TGF β-1. Increased levels of active chromatin marks (H3K4me1, H3K4me2, and H3K4me3) and decreased levels of repressive marks (H3K9me2 and H3K9me3) in TGF-β1 promoter accompanied the changes in expression of the TGF β-1. BDL also increased expression of the H3K4 methyltransferase SET7/9 and recruitment to the promoter. SET7/9 gene knockdown with siRNAs significantly attenuated BDL-induced TGF-β1 gene expression, serum enzymes and liver collagen content. Conclusions: Taken together, these results show the functional role of epigenetic chromatin histone H3Kme in BDL-induced TGF-β1 expression. Pharmacologic and other therapies that reverse these modifications could have potential hepatoprotective effects for BDL-induced cirrhosis.

Original languageEnglish
Pages (from-to)1285-1297
Number of pages13
JournalJournal of Gastroenterology
Volume49
Issue number8
DOIs
Publication statusPublished - 2014 Aug

All Science Journal Classification (ASJC) codes

  • Gastroenterology

Fingerprint

Dive into the research topics of 'Epigenetic histone methylation regulates transforming growth factor β-1 expression following bile duct ligation in rats'. Together they form a unique fingerprint.

Cite this