TY - JOUR
T1 - Equilibrium unfolding of an oligomeric protein involves formation of a multimeric intermediate state(s)
AU - Hsieh, Hui Chu
AU - Kumar, Thallapuranam Krishnaswamy S.
AU - Chiu, Chi Cheng
AU - Yu, Chin
N1 - Funding Information:
This study was supported financially by the National Institutes of Health Grants (NIH NCRR COBRE Grant 1 P20 RR15569), National Science Council, Taiwan, and the Arkansas Bioscience Institute.
Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2004/12/31
Y1 - 2004/12/31
N2 - Superoxide dismutases (SODs) are important metalloenzymes which protect cells against oxidative stress by scavenging reactive superoxides. Missense mutations in SODs are known to lead to some familial cases of amyotrophic lateral sclerosis and several forms of cancers. In the present study, we investigate the guanidinium hydrochloride (GdnHCl)-induced equilibrium unfolding of apo-manganese superoxide dismutase (apo-MnSOD) isolated from Vibrio alginolyticus using a variety of biophysical techniques. GdnHCl-induced equilibrium unfolding of apo-MnSOD is non-cooperative and involves the accumulation of stable intermediate state(s). Results of 1-anilino-8-naphthalene sulfonate binding experiments suggest that the equilibrium intermediate state(s) accumulates maximally in 1.5 M GdnHCl. The intermediate state(s) appears to be obligatory and occurs both in the unfolding and refolding pathways. Size-exclusion chromatography and sedimentation velocity data reveal that the equilibrium intermediate state(s) is multimeric. To our knowledge, this is the first report of the identification of a multimeric intermediate in the unfolding pathway(s) of oligomeric proteins. The formation and dissociation of the multimeric intermediate state(s) appears to dictate the fate of the protein either to refold to its native conformation or misfold and form aggregates as observed in amyotrophic lateral sclerosis.
AB - Superoxide dismutases (SODs) are important metalloenzymes which protect cells against oxidative stress by scavenging reactive superoxides. Missense mutations in SODs are known to lead to some familial cases of amyotrophic lateral sclerosis and several forms of cancers. In the present study, we investigate the guanidinium hydrochloride (GdnHCl)-induced equilibrium unfolding of apo-manganese superoxide dismutase (apo-MnSOD) isolated from Vibrio alginolyticus using a variety of biophysical techniques. GdnHCl-induced equilibrium unfolding of apo-MnSOD is non-cooperative and involves the accumulation of stable intermediate state(s). Results of 1-anilino-8-naphthalene sulfonate binding experiments suggest that the equilibrium intermediate state(s) accumulates maximally in 1.5 M GdnHCl. The intermediate state(s) appears to be obligatory and occurs both in the unfolding and refolding pathways. Size-exclusion chromatography and sedimentation velocity data reveal that the equilibrium intermediate state(s) is multimeric. To our knowledge, this is the first report of the identification of a multimeric intermediate in the unfolding pathway(s) of oligomeric proteins. The formation and dissociation of the multimeric intermediate state(s) appears to dictate the fate of the protein either to refold to its native conformation or misfold and form aggregates as observed in amyotrophic lateral sclerosis.
UR - http://www.scopus.com/inward/record.url?scp=9644279506&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=9644279506&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2004.10.211
DO - 10.1016/j.bbrc.2004.10.211
M3 - Article
C2 - 15567159
AN - SCOPUS:9644279506
SN - 0006-291X
VL - 326
SP - 108
EP - 114
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 1
ER -