Abstract
The multivariate linear mixed model (MLMM) is a frequently used tool for a joint analysis of more than one series of longitudinal data. Motivated by a concern of sensitivity to potential outliers or data with longer-than-normal tails and possible serial correlation, we develop a robust generalization of the MLMM that is constructed by using the multivariate t distribution and a parsimonious AR(p) dependence structure for the within-subject errors. A score test for the inspection of autocorrelation among within-subject errors is derived. A hybrid ECME-scoring procedure is developed for computing the maximum likelihood estimates with standard errors as a by-product. The methodology is illustrated through an application to a set of AIDS data and several simulation studies.
Original language | English |
---|---|
Pages (from-to) | 1857-1880 |
Number of pages | 24 |
Journal | Statistica Sinica |
Volume | 21 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2011 Oct |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Statistics, Probability and Uncertainty