Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1

Kenji K. Kojima, Takumi Matsumoto, Haruhiko Fujiwara

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Most eukaryotic cellular mRNAs are monocistronic; however, many retroviruses and long terminal repeat (LTR) retrotransposons encode multiple proteins on a single RNA transcript using ribosomal frameshifting. Non-long terminal repeat (non-LTR) retrotransposons are considered the ancestor of LTR retrotransposons and retroviruses, but their translational mechanism of bicistronic RNA remains unknown. We used a baculovirus expression system to produce a large amount of the bicistronic RNA of SART1, a non-LTR retrotransposon of the silkworm, and were able to detect the second open reading frame protein (ORF2) by Western blotting. The ORF2 protein was translated as an independent protein, not as an ORF1-ORF2 fusion protein. We revealed by mutagenesis that the UAAUG overlapping stop-start codon and the downstream RNA secondary structure are necessary for efficient ORF2 translation. Increasing the distance between the ORF1 stop codon and the ORF2 start codon decreased translation efficiency. These results are different from the eukaryotic translation reinitiation mechanism represented by the yeast GCN4 gene, in which the probability of reinitiation increases as the distance between the two ORFs increases. The translational mechanism of SART1 ORF2 is analogous to translational coupling observed in prokaryotes and viruses. Our results indicate that translational coupling is a general mechanism for bicistronic RNA translation.

Original languageEnglish
Pages (from-to)7675-7686
Number of pages12
JournalMolecular and Cellular Biology
Volume25
Issue number17
DOIs
Publication statusPublished - 2005 Sep

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1'. Together they form a unique fingerprint.

Cite this