TY - JOUR
T1 - Evaluation of mechanical strengths of three types of mini-implants in artificial bones
AU - Tseng, Yu Chuan
AU - Wu, Ju Hui
AU - Ting, Chun Chan
AU - Chen, Hong Sen
AU - Chen, Chun Ming
N1 - Publisher Copyright:
© 2016
PY - 2017/2/1
Y1 - 2017/2/1
N2 - We investigates the effect of the anchor area on the mechanical strengths of infrazygomatic mini-implants. Thirty mini-implants were divided into three types based on the material and shape: Type A (titanium alloy, 2.0 × 12 mm), Type B (stainless steel, 2.0 × 12 mm), and Type C (titanium alloy, 2.0 × 11 mm).The mini-implants were inserted at 90° and 45° into the artificial bone to a depth of 7 mm, without predrilling. The mechanical strengths [insertion torque (IT), resonance frequency (RF), and removal torque (RT)] and the anchor area were measured. We hypothesized that no correlation exists among the mechanical forces of each brand. In the 90° tests, the IT, RF, and RT of Type C (8.5 N cm, 10.2 kHz, and 6.1 N cm, respectively) were significantly higher than those of Type A (5.0 N cm, 7.7 kHz, and 4.7 N cm, respectively). In the 45° test, the RFs of Type C (9.2 kHz) was significantly higher than those of Type A (7.0 kHz) and Type B (6.7 kHz). The anchor area of the mini-implants was in the order of Type C (706 mm2) > Type B (648 mm2) > Type A (621 mm2). Type C exhibited no significant correlation in intragroup comparisons, and the hypothesis was accepted. In the 90° and 45° tests, Type C exhibited the largest anchor area and the highest mechanical strengths (IT, RF, and RT) among the three types of mini-implants. The anchor area plays a crucial role in the mechanical strength of mini-implants.
AB - We investigates the effect of the anchor area on the mechanical strengths of infrazygomatic mini-implants. Thirty mini-implants were divided into three types based on the material and shape: Type A (titanium alloy, 2.0 × 12 mm), Type B (stainless steel, 2.0 × 12 mm), and Type C (titanium alloy, 2.0 × 11 mm).The mini-implants were inserted at 90° and 45° into the artificial bone to a depth of 7 mm, without predrilling. The mechanical strengths [insertion torque (IT), resonance frequency (RF), and removal torque (RT)] and the anchor area were measured. We hypothesized that no correlation exists among the mechanical forces of each brand. In the 90° tests, the IT, RF, and RT of Type C (8.5 N cm, 10.2 kHz, and 6.1 N cm, respectively) were significantly higher than those of Type A (5.0 N cm, 7.7 kHz, and 4.7 N cm, respectively). In the 45° test, the RFs of Type C (9.2 kHz) was significantly higher than those of Type A (7.0 kHz) and Type B (6.7 kHz). The anchor area of the mini-implants was in the order of Type C (706 mm2) > Type B (648 mm2) > Type A (621 mm2). Type C exhibited no significant correlation in intragroup comparisons, and the hypothesis was accepted. In the 90° and 45° tests, Type C exhibited the largest anchor area and the highest mechanical strengths (IT, RF, and RT) among the three types of mini-implants. The anchor area plays a crucial role in the mechanical strength of mini-implants.
UR - http://www.scopus.com/inward/record.url?scp=85008168505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85008168505&partnerID=8YFLogxK
U2 - 10.1016/j.kjms.2016.11.001
DO - 10.1016/j.kjms.2016.11.001
M3 - Article
C2 - 28137418
AN - SCOPUS:85008168505
SN - 1607-551X
VL - 33
SP - 96
EP - 101
JO - Kaohsiung Journal of Medical Sciences
JF - Kaohsiung Journal of Medical Sciences
IS - 2
ER -