Exact Potts model partition function on strips of the triangular lattice

Shu Chiuan Chang, Robert Shrock

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)


In this paper we present exact calculations of the partition function Z of the q-state Potts model and its generalization to real q, for arbitrary temperature on n-vertex strip graphs, of width Ly = 2 and arbitrary length, of the triangular lattice with free, cyclic, and Mobius longitudinal boundary conditions. These partition functions are equivalent to Tutte/Whitney polynomials for these graphs. The free energy is calculated exactly for the infinite-length limit of the graphs, and the thermodynamics is discussed. Considering the full generalization to arbitrary complex q and temperature, we determine the singular locus B in the corresponding C2 space, arising as the accumulation set of partition function zeros as n→∞. In particular, we study the connection with the T = 0 limit of the Potts antiferromagnet where B reduces to the accumulation set of chromatic zeros. Comparisons are made with our previous exact calculation of Potts model partition functions for the corresponding strips of the square lattice. Our present calculations yield, as special cases, several quantities of graph-theoretic interest.

Original languageEnglish
Pages (from-to)189-238
Number of pages50
JournalPhysica A: Statistical Mechanics and its Applications
Issue number1
Publication statusPublished - 2000 Oct 15

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Exact Potts model partition function on strips of the triangular lattice'. Together they form a unique fingerprint.

Cite this