Experimental determination and modeling of arsenic complexation with humic and fulvic acids

Hoda Fakour, Tsair Fuh Lin

Research output: Contribution to journalArticlepeer-review

100 Citations (Scopus)


The complexation of humic acid (HA) and fulvic acid (FA) with arsenic (As) in water was studied. Experimental results indicate that arsenic may form complexes with HA and FA with a higher affinity for arsenate than for arsenite. With the presence of iron oxide based adsorbents, binding of arsenic to HA/FA in water was significantly suppressed, probably due to adsorption of As and HA/FA. A two-site ligand binding model, considering only strong and weak site types of binding affinity, was successfully developed to describe the complexation of arsenic on the two natural organic fractions. The model showed that the numbers of weak sites were more than 10 times those of strong sites on both HA and FA for both arsenic species studied. The numbers of both types of binding sites were found to be proportional to the HA concentrations, while the apparent stability constants, defined for describing binding affinity between arsenic and the sites, are independent of the HA concentrations. To the best of our knowledge, this is the first study to characterize the impact of HA concentrations on the applicability of the ligand binding model, and to extrapolate the model to FA. The obtained results may give insights on the complexation of arsenic in HA/FA laden groundwater and on the selection of more effective adsorption-based treatment methods for natural waters.

Original languageEnglish
Pages (from-to)569-578
Number of pages10
JournalJournal of Hazardous Materials
Publication statusPublished - 2014 Aug 30

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Experimental determination and modeling of arsenic complexation with humic and fulvic acids'. Together they form a unique fingerprint.

Cite this