Exploiting Network Structure in Multi-criteria Distributed and Competitive Stationary-resource Searching

Fandel Lin, Hsun Ping Hsieh

Research output: Contribution to journalArticlepeer-review

Abstract

Transportation between satellite cities or inside the city center has always been a crucial factor in contributing to a better quality of life. This article focuses on multi-criteria distributed and competitive route planning for stationary resources in regions where neither real-time nor historical availability of the targeted resource is accessible. We propose an inference-than-planning approach, with an availability inference for stationary resources in areas with no sensor coverage and a distributed routing where no information is shared among agents. We leverage the inferred availability and network structure in the searching space to suggest a two-stage algorithm with three relaxing policies: adjacent cruising, on-orbital annealing, and orbital transitioning. We take two publicly accessible parking-slot datasets from San Francisco and Melbourne for evaluation. Overall results show that the proposed availability inference model can retain decent performance. Furthermore, our proposed routing algorithm maintains the quality of solutions by achieving the Pareto-optimal between searching experience and resource utilization among baseline and state-of-the-art methods under various circumstances.

Original languageEnglish
Article number26
JournalACM Transactions on Spatial Algorithms and Systems
Volume9
Issue number4
DOIs
Publication statusPublished - 2023 Nov 21

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Information Systems
  • Modelling and Simulation
  • Computer Science Applications
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'Exploiting Network Structure in Multi-criteria Distributed and Competitive Stationary-resource Searching'. Together they form a unique fingerprint.

Cite this