Exploring Data Analytics to Identify Time-Dependent Factors of Emergency Department Crowding

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

During the period of the COVID-19 pandemic, there is a notable change in the congestion levels of emergency departments (ED). This phenomenon offers an opportunity to study the influence factors of ED crowding. In this work, we crawl real-time information from the ED of major hospitals in Taiwan and conduct data analytics to obtain a comprehensive view of the situation during the COVID-19 pandemic. Note that the data we used contain nonprivate information, avoiding the issue of confidentiality of data. Our goal is to provide valuable information on the appropriate timing of nonemergency patients' visits to the ED and to help nonemergency patients make informed decisions about when to visit the ED, ultimately improving their experience and the overall quality of medical care. The findings of this work have potential applications in developing intelligent systems or mobile applications that could offer valuable insights into optimizing nonemergency patient visits, thereby relieving the ED crowding problem.

Original languageEnglish
Title of host publication2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages113-114
Number of pages2
ISBN (Electronic)9798350324174
DOIs
Publication statusPublished - 2023
Event2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, Taiwan
Duration: 2023 Jul 172023 Jul 19

Publication series

Name2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

Conference

Conference2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
Country/TerritoryTaiwan
CityPingtung
Period23-07-1723-07-19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Human-Computer Interaction
  • Information Systems
  • Information Systems and Management
  • Electrical and Electronic Engineering
  • Media Technology
  • Instrumentation

Fingerprint

Dive into the research topics of 'Exploring Data Analytics to Identify Time-Dependent Factors of Emergency Department Crowding'. Together they form a unique fingerprint.

Cite this