TY - JOUR
T1 - Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management
AU - Tsai, Wen Ping
AU - Chiang, Yen Ming
AU - Huang, Jun Lin
AU - Chang, Fi John
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media Dordrecht.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - The over extraction of groundwater in central-western and southwestern Taiwan has resulted in serious land subsidence for decades. For making countermeasures in response to land subsidence, this study collects long-term hydrological data to explore the relationships between surface water and groundwater in various monitoring stations, and then constructs one-month-ahead forecast models by using data-driven techniques for the water resources management of the Zhuoshui River basin in Taiwan. The results demonstrate that the constructed models can accurately forecast monthly groundwater levels. The sensitivity analysis is next conducted on the input variables of the constructed models by using the partial derivative method. The analysis results reveal that streamflow is a predominant factor for groundwater level variation, and therefore streamflow management made by the upstream weir of the river would influence groundwater level variations. This study further implements several scenario analyses based on the interactive mechanism between groundwater and surface water in response to future climatic conditions and weir discharge management, respectively. The results of scenario analyses indicate that the groundwater recharge zone spreads along the Zhuoshui River while lateral and vertical recharge sources would cause different quantities and distribution patterns of groundwater recharge. Besides, an increase in weir discharge would improve groundwater recharge quantities with groundwater level variations at 0.12 m and 0.06 m in wet and dry seasons, respectively. As a consequence, the operation of weir discharge would play an import role in sustainable development of water resources management in the study area.
AB - The over extraction of groundwater in central-western and southwestern Taiwan has resulted in serious land subsidence for decades. For making countermeasures in response to land subsidence, this study collects long-term hydrological data to explore the relationships between surface water and groundwater in various monitoring stations, and then constructs one-month-ahead forecast models by using data-driven techniques for the water resources management of the Zhuoshui River basin in Taiwan. The results demonstrate that the constructed models can accurately forecast monthly groundwater levels. The sensitivity analysis is next conducted on the input variables of the constructed models by using the partial derivative method. The analysis results reveal that streamflow is a predominant factor for groundwater level variation, and therefore streamflow management made by the upstream weir of the river would influence groundwater level variations. This study further implements several scenario analyses based on the interactive mechanism between groundwater and surface water in response to future climatic conditions and weir discharge management, respectively. The results of scenario analyses indicate that the groundwater recharge zone spreads along the Zhuoshui River while lateral and vertical recharge sources would cause different quantities and distribution patterns of groundwater recharge. Besides, an increase in weir discharge would improve groundwater recharge quantities with groundwater level variations at 0.12 m and 0.06 m in wet and dry seasons, respectively. As a consequence, the operation of weir discharge would play an import role in sustainable development of water resources management in the study area.
UR - http://www.scopus.com/inward/record.url?scp=84982946523&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982946523&partnerID=8YFLogxK
U2 - 10.1007/s11269-016-1453-0
DO - 10.1007/s11269-016-1453-0
M3 - Article
AN - SCOPUS:84982946523
SN - 0920-4741
VL - 30
SP - 4789
EP - 4806
JO - Water Resources Management
JF - Water Resources Management
IS - 13
ER -