Extractive summarization using a fuzzy-rough-based relevance measure

Hsun Hui Huang, Yau Hwang Kuo, Horng Chang Yang

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this paper, a novel method is proposed to extract key sentences of a document as its summary by estimating the relevance of sentences through the use of fuzzyrough sets. This method uses senses rather than raw words to lessen the problem that sentences of the same or similar semantic meaning but written in synonyms are treated differently. Also included is semantic clustering, used to avoid selecting redundant key sentences. A prototype of this automatic text summarization scheme is constructed and an intrinsic method with criteria widely used in information-retrieval systems is employed for measuring the summary quality. The results of applying the prototype to a dataset with manually-generated summaries are shown.

Original languageEnglish
Pages (from-to)1031-1041
Number of pages11
JournalInternational Journal of Innovative Computing, Information and Control
Volume3
Issue number4
Publication statusPublished - 2007 Aug

All Science Journal Classification (ASJC) codes

  • Software
  • Theoretical Computer Science
  • Information Systems
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Extractive summarization using a fuzzy-rough-based relevance measure'. Together they form a unique fingerprint.

Cite this